

GE Fanuc Automation

Computer Numerical Control Products

Servo Motor β Series

Descriptions Manual

GFZ-65232EN/03

December 2002

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

©Copyright 2002 GE Fanuc Automation North America, Inc. All Rights Reserved.

- $\cdot\,$ No part of this manual may be reproduced in any form.
- · All specifications and designs are subject to change without notice.

In this manual we have tried as much as possible to describe all the various matters.

However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities. Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

SAFETY PRECAUTIONS

This "Safety Precautions" section describes the precautions which must be observed to ensure safety when using FANUC servo motors and servo amplifiers. Users of any servo motor or amplifier model are requested to read the "Safety Precautions" carefully before using the servo motor or amplifier.

The users are also requested to read an applicable specification manual carefully and understand each function of the motor or amplifier for correct use.

The users are basically forbidden to do any behavior or action not mentioned in the "Safety Precautions." They are invited to ask FANUC previously about what behavior or action is prohibited.

Contents

1.1	DEFINITION	OF WARNING, CAUTION, AND NOTE.	s-2
1.2	FANUC SERV	O MOTOR $β$ SERIES	s-3
	1.2.1 Warning	·	s-3
	1.2.2Caution		s-6
	1.2.3Note		s-7
1.3	FANUC SERV	Ο AMPLIFIER β SERIES	s-9
	1.3.1 Warnings	and Cautions Relating to Mounting	s-9
	1.3.1.1	Warning	s-9
	1.3.1.2	Caution	s-11
	1.3.1.3	Note	s-13
	1.3.2Warnings	and Cautions Relating to a Pilot Run	s-14
	1.3.2.1	Warning	s-14
	1.3.2.2	Caution	s-15
	1.3.3Warnings	and Cautions Relating to Maintenance	s-16
	1.3.3.1	Warning	s-16
	1.3.3.2	Caution	s-18
	1.3.3.3	Note	s-19

1.1 DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

* Read this manual carefully, and store it in a safe place.

1.2 FANUC SERVO MOTOR β SERIES

1.2.1 Warning

Be safely dressed when handling a motor.

Wear safety shoes or gloves when handling a motor as you may get hurt on any edge or protrusion on it or electric shocks.

• Use a crane or lift to move a motor from one place to another. Motors are heavy. When moving them, use a crane or lift as required. (For the weight of motors, refer to their respective specification manuals.)

When moving a motor using a crane or lift, use a hanging bolt if the motor has a corresponding tapped hole, or textile rope if it has no tapped hole.

If a motor is attached with a machine or any other heavy stuff, do not use a hanging bolt to move the motor as the hanging bolt and/or motor may get broken.

When moving a motor, be careful not to apply excessive force to its windings as the windings may break and/or their insulation may deteriorate.

- **Do not touch a motor with a wet hand.** A failure to observe this caution is very dangerous because you may get electric shocks.

- Before starting to connect a motor to electric wires, make sure they are isolated from an electric power source. A failure to observe this caution is very dangerous because you may get electric shocks.

- Do not bring any dangerous stuff near a motor.

Motors are connected to a power line, and may get hot. If a flammable is placed near a motor, it may be ignited, catch fire, or explode.

Be sure to ground a motor frame. To avoid electric shocks, be sure to connect the grounding terminal in the terminal box to the grounding terminal of the machine.

 Do not ground a motor power wire terminal or short-circuit it to another power wire terminal.
 A failure to observe this caution may cause electric shocks or a

A failure to observe this caution may cause electric shocks or a burned wiring.

(*) Some motors require a special connection such as a winding changeover. Refer to their respective motor specification manuals for details.

Connect power wires securely so that they will not get loose. A failure to observe this caution may cause a wire to be disconnected, resulting in a ground fault, short circuit, or electric shock.

- Do not supply the power to the motor while any terminal is exposed.

A failure to observe this caution is very dangerous because you may get electric shocks if your body or any conductive stuff touches an exposed terminal.

- Do not get close to a rotary section of a motor when it is rotating.

A rotating part may catch your cloths or fingers. Before starting a motor, ensure that there is no stuff that can fly away (such as a key) on the motor.

Before touching a motor, shut off the power to it.
 Even if a motor is not rotating, there may be a voltage across the terminals of the motor.
 Especially before touching a power supply connection, take sufficient precautions.

Otherwise you may get electric shocks.

- Do not touch any terminal of a motor for a while (at least 5 minutes) after the power to the motor is shut off. High voltage remains across power line terminals of a motor for a while after the power to the motor is shut off. So, do not touch any terminal or connect it to any other equipment. Otherwise, you may get electric shocks or the motor and/or equipment may get damaged.

- **To drive a motor, use a specified amplifier and parameters.** An incorrect combination of a motor, amplifier, and parameters may cause the motor to behave unexpectedly. This is dangerous, and the motor may get damaged.

- Do not touch a regenerative discharge unit for a while (at least 30 minutes) after the power to the motor is shut off. A regenerative discharge unit may get hot when the motor is running.

Do not touch the regenerative discharge unit before it gets cool enough. Otherwise, you may get burned.

- Do not touch a motor when it is running or immediately after it stops.

A motor may get hot when it is running. Do not touch the motor before it gets cool enough. Otherwise, you may get burned.

- Ensure that motors and related components are mounted securely.

If a motor or its component slips out of place or comes off when the motor is running, it is very dangerous.

- Be careful not get your hair or cloths caught in a fan. Be careful especially for a fan used to generate an inward air flow. Be careful also for a fan even when the motor is stopped, because it continues to rotate while the amplifier is turned on.
- When designing and assembling a machine tool, make it compliant with EN60204-1. To ensure the safety of the machine tool and satisfy European

standards, when designing and assembling a machine tool, make it compliant with EN60204-1. For details of the machine tool, refer to its specification manual.

- FANUC motors are designed for use with machines. Do not use them for any other purpose.

If a FANUC motor is used for an unintended purpose, it may cause an unexpected symptom or trouble. If you want to use a motor for an unintended purpose, previously consult with FANUC.

- Ensure that a base or frame on which a motor is mounted is strong enough.

Motors are heavy. If a base or frame on which a motor is mounted is not strong enough, it is impossible to achieve the required precision.

- Be sure to connect motor cables correctly. An incorrect connection of a cable cause abnormal heat

generation, equipment malfunction, or failure. Always use a cable with an appropriate current carrying capacity (or thickness). For how to connect cables to motors, refer to their respective specification manuals.

- Ensure that motors are cooled if they are those that require forcible cooling.

If a motor that requires forcible cooling is not cooled normally, it may cause a failure or trouble. For a fan-cooled motor, ensure that it is not clogged or blocked with dust and dirt. For a liquid-cooled motor, ensure that the amount of the liquid is appropriate and that the liquid piping is not clogged. For both types, perform regular cleaning and inspection.

- When attaching a component having inertia, such as a pulley, to a motor, ensure that any imbalance between the motor and component is minimized.

If there is a large imbalance, the motor may vibrates abnormally, resulting in the motor being broken.

- Be sure to attach a key to a motor with a keyed shaft. If a motor with a keyed shaft runs with no key attached, it may impair torque transmission or cause imbalance, resulting in the motor being broken.

1.2.3	Note	
NOTE		 Do not step or sit on a motor. If you step or sit on a motor, it may get deformed or broken. Do not put a motor on another unless they are in packages.
		 When storing a motor, put it in a dry (non-condensing) place at room temperature (0 to 40°C). If a motor is stored in a humid or hot place, its components may get damaged or deteriorated. In addition, keep a motor in such a position that its shaft is held horizontal and its terminal box is at the top.
		 Do not remove a nameplate from a motor. If a nameplate comes off, be careful not to lose it. If the nameplate is lost, the motor becomes unidentifiable, resulting in maintenance becoming impossible. For a nameplate for a built-in spindle motor, keep the nameplate with the spindle.
		- Do not apply shocks to a motor or cause scratches to it. If a motor is subjected to shocks or is scratched, its components may be adversely affected, resulting in normal operation being impaired. Be very careful when handling plastic portions, sensors, and windings, because they are very liable to break. Especially, avoid lifting a motor by pulling its plastic portion, winding, or power cable.
		 Do not conduct dielectric strength or insulation test for a sensor. Such a test can damage elements in the sensor.
		 When testing the winding or insulation resistance of a motor, satisfy the conditions stipulated in IEC60034. Testing a motor under a condition severer than those specified in IEC34 may damage the motor.
		- Do not disassemble a motor. Disassembling a motor may cause a failure or trouble in it. If disassembly is in need because of maintenance or repair, please contact a service representative of FANUC.
		- Do not modify a motor. Do not modify a motor unless directed by FANUC. Modifying a motor may cause a failure or trouble in it.

NOTE

Use a motor under an appropriate environmental condition. Using a motor in an adverse environment may cause a failure or trouble in it.

Refer to their respective specification manuals for details of the operating and environmental conditions for motors.

- Do not apply a commercial power source voltage directly to a motor.

Applying a commercial power source voltage directly to a motor may result in its windings being burned. Be sure to use a specified amplifier for supplying voltage to the motor.

For a motor with a terminal box, make a conduit hole for the terminal box in a specified position.
 When making a conduit hole, be careful not to break or damage unspecified portions.

Refer to an applicable specification manual.

- Before using a motor, measure its winding and insulation resistances, and make sure they are normal.
 Especially for a motor that has been stored for a prolonged period of time, conduct these checks. A motor may deteriorate depending on the condition under which it is stored or the time during which it is stored. For the winding resistances of motors, refer to their respective specification manuals, or ask FANUC. For insulation resistances, see the following table.
- To use a motor as long as possible, perform periodic maintenance and inspection for it, and check its winding and insulation resistances.

Note that extremely severe inspections (such as dielectric strength tests) of a motor may damage its windings. For the winding resistances of motors, refer to their respective specification manuals, or ask FANUC. For insulation resistances, see the following table.

MOTOR INSULATION RESISTANCE MEASUREMENT

Measure an insulation resistance between each winding and motor frame using an insulation resistance meter (500 VDC). Judge the measurements according to the following table.

Insulation resistance	Judgment
100M Ω or higher	Acceptable
10 to 100 MΩ	The winding has begun deteriorating. There is no problem with the performance at present. Be sure to perform periodic inspection.
1 to 10 MΩ	The winding has considerably deteriorated. Special care is in need. Be sure to perform periodic inspection.
Lower than 1 M Ω	Unacceptable. Replace the motor.

1.3 FANUC SERVO AMPLIFIER β SERIES

1.3.1 Warnings and Cautions Relating to Mounting

1.3.1.1 Warning

- Check the specification code of the amplifier. Check that the delivered amplifier is as originally ordered.

- **Mount a ground fault interrupter.** To guard against fire and electric shock, fit the factory power

To guard against fire and electric shock, fit the factory power supply or machine with a ground fault interrupter (designed for use with an inverter).

- Securely ground the amplifier. Securely connect the ground terminal and metal frame of the amplifier and motor to a common ground plate of the power magnetics cabinet.

- Be aware of the weight of the amplifier and other components.

Control motor amplifiers and AC reactors are heavy. When transporting them or mounting them in the cabinet, therefore, be careful not to injured yourself or damage the equipment. Be particularly carefull not to jam your fingers between the cabinet and amplifier.

- Never ground or short-circuit either the power supply lines or power lines.
 Protect the lines from any stress such as bending. Handle the ends appropriately.
- Ensure that the power supply lines, power lines, and signal lines are securely connected.

A loose screw, loose connection, or the like will cause a motor malfunction or overheating, or a ground fault.

- Insulate all exposed parts that are charged.
- Never touch the regenerative discharge resistor or radiator directly.

The surface of the radiator and regenerative discharge unit become extremely hot. Never touch them directly. An appropriate structure should also be considered.

- Close the amplifier cover after completing the wiring. Leaving the cover open presents a danger of electric shock.

- Do not disassemble the amplifier.
- Ensure that the cables used for the power supply lines and power lines are of the appropriate diameter and temperature ratings.
- **Do not apply an excessively large force to plastic parts.** If a plastic section breaks, it may cause internal damage, thus interfering with normal operation. The edge of a broken section is likely to be sharp and, therefore, presents a risk of injury.

1.3.1.2 Caution

- **Do not step or sit on the amplifier.** Also, do not stack unpacked amplifiers on top of each other.
- Use the amplifier in an appropriate environment. See the allowable ambient temperatures and other requirements, given in the corresponding descriptions.
- Protect the amplifier from corrosive or conductive mist or drops of water.
 Use a filter if necessary.
- **Protect the amplifier from impact.** Do not place anything on the amplifier.
- Connect the power supply lines and power lines to the appropriate terminals and connectors.
- Connect the signal lines to the appropriate connectors.

- Do not block the air inlet to the radiator.

A deposit of coolant, oil mist, or chips on the air inlet will result in a reduction in the cooling efficiency. In some cases, the required efficiency cannot be achieved. The deposit may also lead to a reduction in the useful life of the semiconductors. Especially, when outside air is drawn in, mount filters on both the air inlet and outlet. These filters must be replaced regularly. So, an easy-to-replace type of filter should be used.

Before connecting the power supply wiring, check the supply voltage.
 Check that the supply voltage is within the range specified in this

Check that the supply voltage is within the range specified in this manual, then connect the power supply lines.

- Ensure that the combination of motor and amplifier is appropriate.
 - **Ensure that valid parameters are specified.** Specifying an invalid parameter for the combination of motor and amplifier may not only prevent normal operation of the motor but also result in damage to the amplifier.
- Ensure that the amplifier and peripheral equipment are securely connected.

Check that the magnetic contactor, circuit breaker, and other devices mounted outside the amplifier are securely connected to each other and that those devices are securely connected to the amplifier. -

Check that the amplifier is securely mounted in the power magnetics cabinet.

If any clearance is left between the power magnetics cabinet and the surface on which the amplifier is mounted, dust entering the gap may build up and prevent the normal operation of the amplifier.

- Apply appropriate countermeasures against noise.

Adequate countermeasures against noise are required to maintain normal operation of the amplifier. For example, signal lines must be routed away from power supply lines and power lines.

NOTE	
	- Keep the nameplate clearly visible.
	- Keep the legend on the nameplate clearly visible.
	- After unpacking the amplifier, carefully check for any damage.
	- Mount the amplifier in a location where it can be easily accessed periodic inspection and daily maintenance.
	- Leave sufficient space around the machine to enable maintenance to be performed easily.
	Do not place any heavy objects such that they would interfere with the opening of the doors.
	- Keep the parameter table and spare parts at hand. Also, keep the specifications at hand. These items must be stored in a location where they can be retrieved immediately.
	- Provide adequate shielding.

A cable to be shielded must be securely connected to the ground plate, using a cable clamp or the like.

1.3.2 Warnings and Cautions Relating to a Pilot Run

1.3.2.1 Warning

- Before turning on the power, check that the cables connected to the power magnetics cabinet and amplifier, as well as the power lines and power supply lines, are securely connected. Also, check that no lines are slack.
- Before turning on the power, ensure that the power magnetics cabinet is securely grounded.
- Before turning on the power, check that the door of the power magnetics cabinet and all other doors are closed. Ensure that the door of the power magnetics cabinet containing the amplifier, and all other doors, are securely closed. During operation, all doors must be closed and locked.
 - Apply extreme caution if the door of the power magnetics cabinet or another door must be opened.
 Only a person trained in the maintenance of the corresponding machine or equipment should open the door, and only after shutting off the power supply to the power magnetics cabinet (by opening both the input circuit breaker of the power magnetics cabinet and the factory switch used to supply power to the cabinet). If the machine must be operated with the door open to enable adjustment or for some other purpose, the operator must keep his or her hands and tools well away from any dangerous voltages. Such work must be done only by a person trained in the maintenance of the machine or equipment.

When operating the machine for the first time, check that the machine operates as instructed.
To check whether the machine operates as instructed, first specify a small value for the motor, then increase the value gradually. If the motor operates abnormally, perform an emergency stop immediately.

- After turning on the power, check the operation of the emergency stop circuit. Press the emergency stop button to check that the motor stops immediately, and that the power being supplied to the amplifier is shut off by the magnetic contactor.

- Before opening a door or protective cover of a machine to enable adjustment of the machine, first place the machine in the emergency stop state and check that the motor has stopped.

1.3.2.2 Caution

Note whether an alarm status relative to the amplifier is displayed at power-up or during operation.

If an alarm is displayed, take appropriate action as explained in the maintenance manual. If the work to be done requires that the door of the power magnetics cabinet be left open, the work must be carried out by a person trained in the maintenance of the machine or equipment. Note that if some alarms are forcibly reset to enable operation to continue, the amplifier may be damaged. Take appropriate action according to the contents of the alarm.

Before operating the motor for the first time, mount and adjust the position and speed sensors.
Following the instructions given in the maintenance manual, adjust the position and speed sensors for the spindle so that an appropriate waveform is obtained.

If the sensors are not properly adjusted, the motor may not rotate normally or the spindle may fail to stop as desired.

- If the motor makes any abnormal noise or vibration while operating, stop it immediately.

Note that if operation is continued in spite of there being some abnormal noise or vibration, the amplifier may be damaged. Take appropriate corrective action, then resume operation.

- Observe the ambient temperature and output rating requirements. The continuous output rating or continuous operation period of

some amplifiers may fall as the ambient temperature increases. If the amplifier is used continuously with an excessive load applied, the amplifier may be damaged.

Unless otherwise specified, do not insert or remove any connector while the power is turned on. Otherwise, the amplifier may fail.

1.3.3 Warnings and Cautions Relating to Maintenance

1.3.3.1 Warning

Read the maintenance manual carefully and ensure that you
are totally familiar with its contents.

The maintenance manual describes daily maintenance and the procedures to be followed in the event of an alarm being issued. The operator must be familiar with these descriptions.

- Notes on replacing a fuse or PC board

- 1) Before starting the replacement work, ensure that the circuit breaker protecting the power magnetics cabinet is open.
- 2) Check that the red LED that indicates that charging is in progress is not lit. The position of the charging LED on each model of amplifier is given in this manual. While the LED is lit, hazardous voltages are present inside the unit, and thus there is a danger of electric shock.
- 3) Some PC board components become extremely hot. Be careful not to touch these components.
- 4) Ensure that a fuse having an appropriate rating is used.
- Check the specification code of a PC board to be replaced. If a modification drawing number is indicated, contact FANUC before replacing the PC board.
 Also, before and after replacing a PC board, check its pin settings.
- 6) After replacing the fuse, ensure that the screws are firmly tightened. For a socket-type fuse, ensure that the fuse is inserted correctly.
- 7) After replacing the PC board, ensure that it is securely connected.
- 8) Ensure that all power lines, power supply lines, and connectors are securely connected.

- Take care not to lose any screws.

When removing the case or PC board, take care not to lose any screws. If a screw is lost inside the nit and the power is turned on, the machine may be damaged.

Notes on replacing the battery of the absolute pulse coder

Replace the battery only while the power is on. If the battery is replaced while the power is turned off, the stored absolute positioning data will be lost. Some series servo amplifier modules have batteries in their servo amplifiers. To replace the battery of any of those models, observe the following procedure: Open the door of the power magnetics cabinet; Leave the control power of the power supply module on; Place the machine in the emergency stop state so that the power being input to the amplifier is shut off; Then, replace the battery. Replacement work should be done only by a person who is trained in the related maintenance and safety requirements. The power magnetics cabinet in which the servo amplifier is mounted has a high-voltage section. This section presents a severe risk of electric shock.

- Check the number of any alarm.

If the machine stops upon an alarm being issued, check the alarm number. Some alarms indicate that a component must be replaced. If the power is reconnected without first replacing the failed component, another component may be damaged, making it difficult to locate the original cause of the alarm.

- Before resetting an alarm, ensure that the original cause of the alarm has been removed.
- Contact FANUC whenever a question relating to maintenance arises.
- Notes on removing the amplifier Before removing the amplifier, first ensure that the power is shut off. Be careful not to jam your fingers between the power magnetics cabinet and amplifier.

- Ensure that all required components are mounted.

When replacing a component or PC board, check that all components, including the snubber capacitor, are correctly mounted. If the snubber capacitor is not mounted, for example, the IPM will be damaged.

- Tighten all screws firmly.
- Check the specification code of the fuse, PC board, and other components.

When replacing a fuse or PC board, first check the specification code of the fuse or PC board, then mount it in the correct position. The machine will not operate normally if a fuse or PC board having other than the correct specification code is mounted, or if a fuse or PC board is mounted in the wrong position.

- Mount the correct cover.

The cover on the front of the amplifier carries a label indicating a specification code. When mounting a previously removed front cover, take care to mount it on the unit from which it was removed.

- Notes on cleaning the heat sink and fan

- 1) A dirty heat sink or fan results in reduced semiconductor cooling efficiency, which degrades reliability. Periodic cleaning is necessary.
- 2) Using compressed air for cleaning scatters the dust. A deposit of conductive dust on the amplifier or peripheral equipment will result in a failure.
- 3) To clean the heat sink, do so only after turning the power off and ensuring that the heat sink has cooled to room temperature. The heat sink becomes extremely hot, such that touching it during operation or immediately after power-off is likely to cause a burn. Be extremely careful when touching the heat sink.

1.3.3.3 Note

NOTE

Ensure that the battery connector is correctly inserted. If the power is shut off while the battery connector is not connected correctly, the absolute position data for the machine will be lost.

- Store the manuals in a safe place. The manuals should be stored in a location where they can be accessed immediately it so required during maintenance work.

- Notes on contacting FANUC

_

Inform FANUC of the details of an alarm and the specification code of the amplifier so that any components required for maintenance can be quickly secured, and any other necessary action can be taken without delay.

TABLE OF CONTENTS

SA	FETY	PREC	AUTIONS	s-1		
I. I	DESC	RIPTI	ONS FOR FANUC AC SERVO MOTOR $\boldsymbol{\beta}$ series			
1	OVE	RVIEW	۱	3		
2	ΝΟΤ	ES ON	USE	4		
	2.1		PATIBLE AMPLIFIERS			
		2.1.1	Amplifiers Suitable for the βM series Servo Motors	5		
		2.1.2	Amplifiers Suitable for the β series Servo Motors	7		
	2.2	INSTA	ALLATION	10		
	2.3	COUF	PLING	11		
	2.4	AXIS	LOAD	13		
	2.5	ENVI	RONMENT	14		
	2.6	ACCE	PTANCE AND STORAGE	18		
3	INST	INSTRUCTIONS				
	3.1	DRIV	E SHAFT COUPLING	20		
	3.2	MACH	HINE MOVEMENT PER 1 REVOLUTION OF MOTOR SHAFT	23		
4	SEL	SELECTING A MOTOR24				
	4.1	мото	DR SELECTION	26		
		4.1.1	Blanks for Those Other than Data			
		4.1.2	Data Items to be Entered	27		
	4.2	CHAR	RACTERISTIC CURVE AND DATA SHEET	35		
		4.2.1	Characteristic Curves	35		
		4.2.2	Data Sheet	36		
		4.2.3	How to Use Overload Duty Curves	37		
5	IEC3	34 STAI	NDARD	38		
	5.1	REQL	JIREMENTS FOR COMPLIANCE	39		
		5.1.1	Drive Unit	39		
		5.1.2	Connector	39		
	5.2	APPR	OVAL SPECIFICATIONS	41		
		5.2.1	Rotational Speed (IEC34-1)	41		
		5.2.2	Output (IEC34-1)	41		
		5.2.3	Protection Mode (IEC34-5)	42		
		5.2.4	Cooling Method (IEC34-6)	42		

		5.2.5	Installation Method (IEC34-7)	
		5.2.6	Heat Protection (IEC34-11)	43
6	EMC	DIREC		44
7			(DETECTOR	
1	7.1		I-IN DETECTOR	
	7.2		DLUTE-TYPE PULSE CODER	
	7.3		RNAL POSITION DETECTOR	
	7.4		CTOR SIGNAL OUTPUT	
8			RAKE	
0	8.1			
	8.2		RES OF CONNECTORS	
	8.3		NECTION OF THE BRAKES	
-				
9			DRS	
	9.1		CIFICATIONS OF MOTOR CONNECTORS	
	9.2		2 AND β M0.3 CONNECTORS ON CABLE SIDE	
		9.2.1	Specifications of β M0.2 and β M0.3 Connectors for Power and Brake	
		9.2.2	Specifications of β M0.2 and β M0.3 Connectors for Signal	
	9.3	•	Φ TO $β$ M1 CONNECTORS ON CABLE SIDE	
		9.3.1	Specifications of β M0.4 to β M1 Connectors for Power and Brake	
		9.3.2	Specifications of β M0.4 to β M1 Connectors for Signal	
	9.4	•	β β6 CONNECTORS ON CABLE SIDE	64
		9.4.1	Specifications of $\beta 1$ to $\beta 6$ Connectors for Power and Brake	
			(TÜV-certified and Waterproof Type)	
		9.4.2		
			(Not TÜV-compliant and Waterproof Type)	
		9.4.3	Specifications of β 1 to β 6 Connectors for Power and Brake	
			(Not TÜV-compliant and Non-waterproof Type)	
		9.4.4	Specifications of $\beta 1$ to $\beta 6$ Connectors for Signal	
П.	FANU	JC AC	SERVO MOTOR β M series	
1	ΤΥΡΙ	ES OF	MOTORS AND DESIGNATION	71
2			TIONS AND CHARACTERISTICS	
2	JLE	ыгіса	(110N3 AND CHARACTERIS 1103	<i>1</i> J

2.1	TYPE OF MOTORS AND SPECIFICATIONS	.74
2.2	CHARACTERISTIC CURVE AND DATA SHEET	.75

	2.3	AN I/C	ED-TORQUE CHARACTERISTICS WHEN HRV1 CONTROL D Link β AMPLIFIER ARE USED	81		
	2.4		INE DRAWINGS	82		
	. FAN	UC AC	C SERVO MOTOR β series			
1	TYPI	ES OF	MOTORS AND DESIGNATION	95		
2	SPE	SPECIFICATIONS AND CHARACTERISTICS				
	2.1	TYPE	OF MOTORS AND SPECIFICATIONS	97		
	2.2	CHAF	RACTERISTIC CURVE AND DATA SHEET			
	2.3	SPEE	D-TORQUE CHARACTERISTICS FOR HRV CONTROL	103		
	2.4	OUTL	INE DRAWINGS	105		
IV	. FAN	UC AC	C SERVO AMPLIFIER β series			
1	OVE	RVIEW	Ι	113		
2	CON	FIGUR				
	2.1		INTERFACE			
		2.1.1	SVU-4, SVU-12, SVU-20 (Three-phase Power Input)			
		2.1.2	SVU-4, SVU-12, SVU-20 (Single-phase Power Input)	116		
		2.1.3	SVU-40, SVU-80 (Three-phase Power Input)	117		
		2.1.4	SVU-40, SVU-80 (Single-phase Power Input)			
	2.2	nk INTERFACE	119			
		2.2.1	SVU-4, SVU-12, SVU-20 (Three-phase Power Input)			
		2.2.2	SVU-4, SVU-12, SVU-20 (Single-phase Power Input)			
		2.2.3	SVU-40, SVU-80 (Three-phase Power Input)	121		
		2.2.4	SVU-40, SVU-80 (Single-phase Power Input)	122		
	2.3	PWM	INTERFACE	123		
		2.3.1	SVU-4, SVU-12, SVU-20 (Three-phase Power Input)	123		
		2.3.2	SVU-4, SVU-12, SVU-20 (Single-phase Power Input)	124		
		2.3.3	SVU-40, SVU-80 (Three-phase Power Input)	125		
		2.3.4	SVU-40, SVU-80 (Single-phase Power Input)	126		
	2.4	METH	OD OF CONNECTING THE FAN MOTOR	127		
	2.5	UNIT	TYPES AND SPECIFICATIONS	128		
	2.6 CIRCUIT BREAKER, ELECTROMAGNETIC CONTACTOR,					
		AND /	AC LINE FILTER	137		
		2.6.1	Circuit Breaker Rating			
		2.6.2	Electromagnetic Contactor Rating			

		2.6.3	AC Line Filter	139	
	2.7	CONN	NECTOR	140	
3	SPEC	SPECIFICATIONS			
	3.1	SPEC	IFICATIONS	142	
	3.2	DERA	TING	143	
		3.2.1	For SVU-20	143	
		3.2.2	For SVU-40 and SVU-80	144	
	3.3	PROT	ECTION AND ABNORMALITY DETECTION FUNCTIONS	146	
	3.4	NORM	AL OPERATING MODE	148	
4	SEP	ARATE	D REGENERATIVE DISCHARGE UNIT	149	
	4.1	FOR	SVU-4, SVU-12, AND SVU-20	150	
		4.1.1	Cases Where a Separated Regenerative Discharge Unit Is Not Required	150	
		4.1.2	Cases Where a Separated Regenerative Discharge Unit Is Required	152	
		4.1.3	For SVU-40 and SVU-80	154	
		4.1.4	Notes on Regenerative Discharge Unit Installation	156	
5	POWER SUPPLY				
	5.1	INPU ⁻	T POWER SUPPLY	163	
		5.1.1	Three-phase Input Power Supply for Motor Power	163	
		5.1.2	Single-phase Input Power Supply for Motor Power	163	
		5.1.3	Single-phase Input for Control Power	163	
	5.2	POWI	ER SUPPLY RATINGS	164	
		5.2.1	Three-phase Input Power Supply Ratings for Motor Power	164	
	5.3	POWI	ER TRANSFORMER FOR EXPORTS	165	
		5.3.1	Specification	165	
		5.3.2	How to Select a Transformer	166	
6	HEA	T DISS	IPATION	167	
7	INST	ALLAT	ION CONDITIONS AND NOTES	168	
	7.1		RONMENTAL CONDITIONS		
	7.2	SELECTING A GROUND FAULT INTERRUPTER			
	7.3			171	
		7.3.1	Separation of Signal Lines	171	
		7.3.2	Grounding		
		7.3.3	Noise Suppressor	174	
		7.3.4	Cable Clamp and Shield Processing	175	
	7.4	INSTA	ALLING LIGHTNING SURGE ABSORBERS	178	

8	CAUTIONS FOR SAFETY STANDARDS RELATED TO AMPLIFIER			
	INST	ALLAT	ION	181
	8.1	OVER	VIEW	182
	8.2	STANI	DARD CATEGORIES RELATED TO INSULATION DESIGN	183
	8.3	PROT	ECTION AGAINST SHOCK HAZARDS	184
	8.4	PROT	ECTIVE GROUNDING	186
	8.5	CAUTI	IONS FOR CONFIGURING AN EMERGENCY STOP CIRCUIT.	187
	8.6	SUPPI	RESSING ELECTROMAGNETIC INTERFERENCE	188
	8.7	PROT	ECTIVE GROUND WIRE CONNECTION	189
		8.7.1	SVU-4/12/20 (PWM Interface)	189
		8.7.2	SVU-4/12/20 (I/O Link Interface)	190
		8.7.3	SVU-40/80 (FSSB Interface)	191
		8.7.4	SVU-40/80 (I/O Link Interface)	192
9	OUTL	INE D	RAWINGS AND MAINTENANCE CLEARANCES	193
	9.1	OUTLI	NE DRAWINGS AND PANEL CUT-OUT DRAWINGS	194
		9.1.1	Servo Amplifier Unit SVU-4,SVU-12,SVU-20 (FSSB Interface)	194
		9.1.2	Servo Amplifier Unit SVU-40,SVU-80 (FSSB Interface)	195
		9.1.3	AC Line Filter	196
		9.1.4	Power Transformer for Export	199
		9.1.5	Separated Regenerative Discharge Unit	200
		9.1.6	Battery Case	203
	9.2	PANE	L CUT-OUT DRAWINGS	204
		9.2.1	SVU40, SVU-80	204
		9.2.2	Separated Regenerative Discharge Unit	205
	9.3	MAINT		207
v .	CONN		ON	
1	ΤΟΤΑ		NECTION DIAGRAM	213
	1.1		INTERFACE (SVU4, SVU-12, SVU-20)	
		1.1.1	Three-phase Input	
		1.1.2	Single-phase Input (SVU4, SVU-12, SVU-20)	
	4.0			

1.2 I/O Link INTERFACE (SVU4, SVU-12, SVU-20) 216 1.2.1 Three-phase Input 216 1.2.2 Single-phase Input (SVU4, SVU-12, SVU-20) 217

2	CONN	IECTO	R LOCATIONS FOR β SERIES AMPLIFIER	220
	2.1	FSSB I	NTERFACE (SVU4, SVU-12, SVU-20)	221
	2.2	I/O Linł	(INTERFACE (SVU4, SVU-12, SVU-20)	222
	2.3	PWM I	NTERFACE (SVU4, SVU-12, SVU-20)	223
	2.4	PIN AS	SIGNMENT OF CONNECTOR CX11 (SVU4, SVU-12, SVU-2	0)224
		2.4.1	When No Regenerative Resistor Is Used	225
		2.4.2	When a Regenerative Resistor Is Used	226
3	DIME	NSION	S INCLUDING CABLES	227
	3.1	FSSB I	NTERFACE (SVU-4, SVU-12, SVU-20)	228
	3.2		(INTERFACE (SVU-4, SVU-12, SVU-20)	
	3.3	PWM I	NTERFACE (SVU-4, SVU-12, SVU-20)	230
4	DETA	ILS OF	CABLE CONNECTIONS	231
	4.1		BLE CONNECTION (ONLY FOR PWM INTERFACE)	
	4.2	K2 CAE	BLE CONNECTION	235
	4.3	K3 CAE	BLE CONNECTION	239
	4.4	K4 CAE	BLE CONNECTION	240
	4.5	K5 CAE	BLE CONNECTION	245
		4.5.1	FOR FSSB Interface or PWM Interface	245
		4.5.2	ESP Signal Using More than One β Amplifier	246
		4.5.3	ESP Signal in Using a Servo Check Pin Board	247
	4.6	K7 CAE	BLE CONNECTION	248
		4.6.1	When Regenerative Discharge Unit is Used	248
		4.6.2	When Regenerative Discharge Unit is not Used	248
	4.7	K8 CAE	BLE CONNECTION	249
		4.7.1	When Regenerative Discharge Unit is Used	249
		4.7.2	When Regenerative Discharge Unit is not Used	249
	4.8	K9 CAE	BLE CONNECTION	250
	4.9	K10 CA	ABLE CONNECTION	252
	4.10	K12 CA	ABLE CONNECTION	253
	4.11	K13 CA	ABLE CONNECTION	254
	4.12	K14 CA	ABLE CONNECTION	255
5	ΤΟΤΑ	L CON	NECTION DIAGRAM	256
	5.1	FSSB I	NTERFACE (SVU40, SVU-80)	257
		5.1.1	Three-phase Power Input	257
		5.1.2	Single-phase Power Input	258
	5.2	I/O Linł	(INTERFACE(SVU40, SVU-80)	259

		5.2.1	Three-phase Power Input	259
		5.2.2	Single-phase Power Input	260
	5.3	PWM	INTERFACE (SVU40, SVU-80)	261
		5.3.1	Three-phase Power Input	261
		5.3.2	Single-phase Power Input	262
6	CON	NECTO	OR ALLOCATION DIAGRAM OF β AMPLIFIERS	
				263
	6.1	FSSB	INTERFACE	264
	6.2	I/O Lin	IK INTERFACE (SVU-40, SVU-80)	265
	6.3	PWM	INTERFACE (SVU-40, SVU-80)	266
7	DIME	NSION	IS INCLUDING CABLES	267
	7.1	FSSB	INTERFACE (SVU-40, SVU-80)	268
	7.2		k INTERFACE (SVU-40, SVU-80)	
	7.3	PWM	INTERFACE (SVU-40, SVU-80)	270
8	DETA		F CABLE CONNECTIONS	271
	8.1	K1 CA	BLE CONNECTION (ONLY FOR PWM INTERFACE)	272
	8.2	K2 CA	BLE CONNECTION (ONLY FOR PWM INTERFACE)	273
	8.3	K3 CA	BLE CONNECTION	274
	8.4	K4 CA	BLE CONNECTION	275
	8.5	K7 AN	D K8 CABLES CONNECTION	276
	8.6	K14 C	ABLE CONNECTION	278
	8.7	K15 C	ABLE CONNECTION	279
	8.8		ABLE CONNECTION	
	8.9		ABLE CONNECTION	
	8.10	OTHE	R CABLE CONNECTIONS	282
9	FANU	IC I/O	Link CONNECTION	
	(FOR	I/O Lii	nk INTERFACE ONLY)	283
	9.1		VIEW	
	9.2		C I/O Link CONNECTION VIA ELECTRIC CABLE	
	9.3	FANU	C I/O Link CONNECTION VIA OPTICAL CABLE	287
10	CON	NECTIO	ON OF BUILT-IN DI	
	(FOR	I/O Lii	nk INTERFACE ONLY)	288
	10.1	INPUT	SIGNAL SPECIFICATION	289
	10.2		OF SIGNALS	
	10.3	SIGNA	AL CONNECTION WITH THE POWER MAGNETICS CABINET	291

<u>TAB</u>	<u>LE OF</u>	CONTENTS	B-65232EN/03
	10.4	SKIP SIGNAL INTERFACE	
		10.4.1 High-Speed Skip Signal Input Specification	
11	EXTE	ERNAL PULSE INPUT (ONLY FOR I/O Link IN)	TERFACE) 293
	11.1	CONNECTION WHEN AN A/B-PHASE PULSE GENE	RATOR OF
		DIFFERENTIAL TYPE IS USED	294
		11.1.1 K22 Cable Connection	
	11.2	CONNECTION WHEN A MANUAL PULSE GENERAT	OR AVAILABLE FROM

11.2.1 11.2.2

11.2.3

I. DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series

OVERVIEW

The FANUC AC SERVO MOTOR β series is an economical AC servo motor series most suitable for positioning peripheral devices of industrial machines and machine tools, and has the features listed below.

SERVO MOTOR β M series

- Compactness

By employing a most advanced high-performance magnet and optimized structure, the SERVO MOTOR βM series is made shorter and compact in overall size.

- Superior acceleration performance

With a high maximum output torque and low inertia, high acceleration performance and highly frequent positioning are made possible.

- High-resolution detector

High-precision positioning is enabled by mounting a highly reliable, high-resolution β pulse coder (optical encoder). (Resolution: 65,536/rev.)

- High environmental resistance

The SERVO MOTOR βM series has high environmental resistance satisfying IP65 as standard.

- Brake option

An optional built-in holding brake is available.

SERVO MOTOR β series

- Compactness

By employing a most advanced high-performance magnet and larger frame, the SERVO MOTOR β series is made compact and thin in overall size.

- High-resolution detector

High-precision positioning is enabled by mounting a highly reliable, high-resolution β pulse coder (optical encoder). (Resolution: 32,768/rev.)

- High environmental resistance

The SERVO MOTOR β series has high environmental resistance satisfying IP65 as standard.

- Brake option

An optional built-in holding brake is available.

2 **NOTES ON USE**

2.1 **COMPATIBLE AMPLIFIERS**

2.1.1 Amplifiers Suitable for the β M series Servo Motors

Motor model	Series		Model	Interface	Specification	Connection axis
	β series servo amplifier		SVU-4	FSSB	A06B-6093-H119	
βM0.2/4000	unit	1-0115	500-4	I/O Link	A06B-6093-H159	
βM0.3/4000	αi series servo amplifier	2-axis	SVM2-4/4 <i>i</i>	FSSB	A06B-6114-H201	L, M
	module	3-axis	SVM3-4/4/4 <i>i</i>	FSSB	A06B-6114-H301	L, M, N

The FANUC AC SERVO MOTOR βM series can be driven by the FANUC SERVO AMPLIFIER β series or αi series.

Motor model	Series		Model	Interface	Specification	Connection axis
	β series servo amplifier	1-axis	SVU-20	FSSB	A06B-6093-H112	
	unit			TYPE B	A06B-6093-H102	
		1-axis	SVM1-20 <i>i</i>	FSSB	A06B-6114-H103	L, M L L, M, N
βM0.4/4000	·	0	SVM2-20/20i	FSSB	A06B-6114-H205	
	αi series servo amplifier	2-axis	2-axis SVM2-20/40 <i>i</i> FSSB	A06B-6114-H206	L	
	module	2 avia	SVM3-20/20/20i	FSSB	A06B-6114-H303	L, M, N
			SVM3-20/20/40i	FSSB	A06B-6114-H304	L, M

Motor model	Series		Model	Interface	Specification	Connection axis
	$\boldsymbol{\beta}$ series servo amplifier unit	1-axis	SVU-20	FSSB	A06B-6093-H112	
				I/O Link	A06B-6093-H152	
				TYPE B	A06B-6093-H102	
βM0.5/4000		1-axis	SVM1-20 <i>i</i>	FSSB	A06B-6114-H103	
βM1/4000		0 avia	SVM2-20/20 <i>i</i>	FSSB	A06B-6114-H205	L, M
-	α <i>i</i> series servo amplifier module	2-axis	SVM2-20/40 <i>i</i>	FSSB	A06B-6114-H206	L
	module	0	SVM3-20/20/20i	FSSB	A06B-6114-H303	L, M, N
		3-axis	SVM3-20/20/40i	FSSB	A06B-6114-H304	L, M

Using a combination other than those listed above is likely to result in motor damage.

NOTE

- 1 For information about the β series servo amplifier unit, refer to Part IV of this manual. For information about the αi series servo amplifier module, refer to FANUC AC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN).
- 2 The β series servo amplifier unit uses two types of interfaces with a CNC, namely, FSSB and TYPE B. The αi series servo amplifier module uses only one interface with a CNC, namely, FSSB. Before selecting a servo amplifier, check the interface of a CNC to be used. A β series servo amplifier unit with the I/O Link option for providing a position control feature is also available for choice.
- 3 β M0.4/4000 cannot be used with a β series servo amplifier unit with the I/O Link option.
- 4 When using the β M series servo motor with the α series servo amplifier module, consult with FANUC.

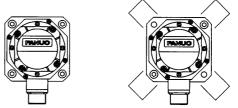
2.1.2 Amplifiers Suitable for the $\boldsymbol{\beta}$ series Servo Motors

Motor model	Series		Model	Interface	Specification	Connection axis
	0		SVU-12	FSSB	A06B-6093-H111	
	β series servo amplifier	1-axis		I/O Link	A06B-6093-H151	
	unit			TYPE B	A06B-6093-H101	
		1 avia	0)/041_40	FSSB	A06B-6096-H101	
		I-axis	SVM1-12	TYPE A, B	A06B-6079-H101	
1			01/140 40/40	FSSB	A06B-6096-H201	1 14
			SVM2-12/12	TYPE A, B	A06B-6079-H201	–L, M
			01/11/02 4 0/00	FSSB	A06B-6096-H202	
		2-axis	SVM2-12/20	TYPE A, B	A06B-6079-H202	-L
			SVM2-12/40	FSSB	A06B-6096-H204	—L
	α series servo amplifier module			TYPE A, B	A06B-6079-H204	
		3-axis	SVM3-12/12/12	FSSB	A06B-6096-H301	L, M, N
β1/3000				TYPE A	A06B-6079-H301	
β2/3000				TYPE B	A06B-6080-H301	
			SVM3-12/12/20	FSSB	A06B-6096-H302	L, M
				TYPE A	A06B-6079-H302	
				TYPE B	A06B-6080-H302	
				FSSB	A06B-6096-H303	
			SVM3-12/20/20	TYPE A	A06B-6079-H303	L
				TYPE B	A06B-6080-H303	
				FSSB	A06B-6096-H305	
			SVM3-12/12/40	TYPE A	A06B-6079-H305	L, M
				TYPE B	A06B-6080-H305	
				FSSB	A06B-6096-H306	
			SVM3-12/20/40	TYPE A	A06B-6079-H306	L
				TYPE B	A06B-6080-H306	

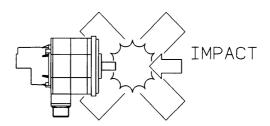
The FANUC AC SERVO MOTOR $\boldsymbol{\beta}$ series can be driven by the FANUC SERVO AMPLIFIER β series or α series.

Motor model	Series		Model	Interface	Specification	Connection axis
				FSSB	A06B-6093-H112	
	β series servo amplifier	1-axis	SVU-20	I/O Link	A06B-6093-H152	
	unit			TYPE B	A06B-6093-H102	
		1 0/10	SVM1-20	FSSB	A06B-6096-H102	
		I-axis	5 111-20	TYPE A, B	A06B-6079-H102	
			C) (M2 42/20	FSSB	A06B-6096-H202	N 4
			SVM2-12/20	TYPE A, B	A06B-6079-H202	M
		0	0.440.00/00	FSSB	A06B-6096-H203	
		2-axis	SVM2-20/20	TYPE A, B	A06B-6079-H203	L, M
			SVM2-20/40	FSSB	A06B-6096-H205	—L
	α series servo amplifier module			TYPE A, B	A06B-6079-H205	
			SVM3-12/12/20	FSSB	A06B-6096-H302	N
33/3000		3-axis		TYPE A	A06B-6079-H302	
36/2000				TYPE B	A06B-6080-H302	
			SVM3-12/20/20	FSSB	A06B-6096-H303	M, N
				TYPE A	A06B-6079-H303	
				TYPE B	A06B-6080-H303	
				FSSB	A06B-6096-H304	L, M, N
			SVM3-20/20/20	TYPE A	A06B-6079-H304	
				TYPE B	A06B-6080-H304	
				FSSB	A06B-6096-H306	
			SVM3-12/20/40	TYPE A	A06B-6079-H306	М
				TYPE B	A06B-6080-H306	
				FSSB	A06B-6096-H307	
			SVM3-20/20/40	TYPE A	A06B-6079-H307	L, M
				TYPE B	A06B-6080-H307	

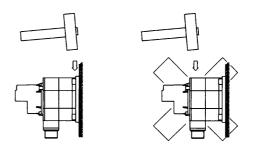
Driving a motor according to a combination other than those listed above can damage the motor.


NOTE

- 1 For information about the β series servo amplifier unit, refer to Part IV of this manual. For information about the αi series servo amplifier module, refer to FANUC AC SERVO AMPLIFIER ai series DESCRIPTIONS (B-65282EN).
- 2 The β series servo amplifier unit uses two types of interfaces with a CNC, namely, FSSB and TYPE B. The α series servo amplifier module uses three types of interfaces with a CNC, namely, FSSB, TYPE A, and TYPE B. Before selecting a servo amplifier, check the interface of a CNC to be used. A β series servo amplifier unit with the I/O Link option for providing a position control feature is also available for choice.
- 3 An α series servo amplifier module marked with TYPE A, B allows switching between TYPE A and TYPE B
- 4 When using the β series servo motor with the αi series servo amplifier module, consult with FANUC.

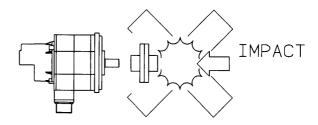

2.2 INSTALLATION

The servo motor contains a precision detector, and is carefully machined and assembled to provide the required precision. Pay attention to the following items to maintain the precision and prevent damage to the detector.

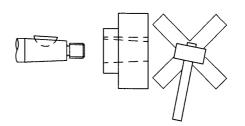

(1) Secure the servo motor uniformly using four bolt holes provided on the front flange.

- (2) The machine surface on which the motor is mounted must be flat.
- (3) When mounting on the machine, take care not to apply a shock to the motor.

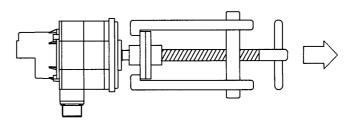
(4) When striking the motor is unavoidable for fine position adjustment, strike only the flange on the front side with a plastic hammer softly so that impact is not applied to any portions other than the flange on the front side.



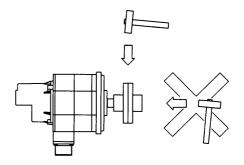
(5) When handling model β M0.2/4000 or β M0.3/4000, be sure to hold the main body of the motor. Do not carry the motor by holding the lead wire only.


2.3 COUPLING

A precision detector is directly attached to the shaft end of the servo motor. Pay attention to the following items to prevent damage to the detector.


(1) When connecting the power transmission elements such as a gear, a pulley and a coupling to the shaft, take care not to apply a shock to the shaft.

- (2) Generally, in the case of straight shaft, use a span ring for connection with the shaft.
- (3) In the case of tapered shaft, match the tapered surface with the power transmission element and fix by tightening the screw at the end. Even if the power transmission element cannot be mounted securely, for example, because of the woodruff key being tight, do not strike the shaft with a hammer or the like. The woodruff key mounted on the taper shaft is used mainly for positioning, while the tapered surface of the shaft is used for torque transmission. The tapered surface of the transmission element should be ground so that at least 70% of the papered surface meets the shaft surface for efficient torque transmission.



(4) To remove the connected power transmission element, be sure to use a jig such as a gear puller.

2.NOTES ON USE

(5) Even when a light impact needs to be applied to remove the jointed taper surface, for example, just strike it softly in the radial direction. Do not apply impact in the axial direction.

- (6) Suppress the rotary unbalance of the connected power transmission element to the level as low as possible. It is usually believed that there is no problem in the symmetrical form. Be careful when rotating continuously the asymmetrical different form power transmission element. Even if the vibration caused by the unbalance is as small as 0.5G, it may damage the motor bearing or the detector.
- (7) An exclusive large oil seal is used in the front flange of the models $\beta 3/3000$ and $\beta 6/2000$. The oil seal surface is made of steel plate. Take care not to apply a force to the oil seal when installing the motor or connecting the power transmission elements.

2.4 AXIS LOAD

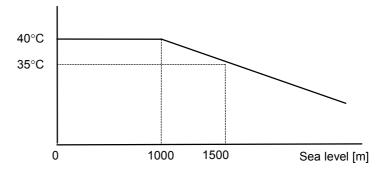
Motor model	Radial load	Axial load	Front bearing (reference)
βM0.2/4000 βM0.3/4000	6.4kgf	4kgf	699
βM0.4/4000 βM0.5/4000 βM1/4000	20kgf	5kgf	6902
β1/3000 β2/3000	25kgf	8kgf	6003 (standard) 6202 (with brake)
β3/3000 β6/2000	70kgf	20kgf	6205

The allowable axis load of the motor shaft is as follows.

- (1) The allowable radial load is the value when a load is applied to the shaft end. It indicates the total continuous force applied to the shaft in some methods of mounting (e.g, belt tension) and the force by load torque (e.g., moment/pulley radius).
- (2) The belt tension is critical particularly when a timing belt is used. Too tight belt causes breakage of the shaft or other fault. Belt tension must be controlled so as not to exceed the limits calculated from the permissible radial load indicated above.
- (3) In some operation conditions, the pulley diameter and the gear size need to be checked. For example, when using the model $\beta 6$ with a pulley/gear with the radius of 2.5cm or less, the radial load at the occurrence of 180kgf·cm torque will exceed 70kgf. In the case of timing belt, as the belt tension is added to this value, it is thus necessary to support the shaft end.

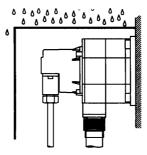
The timing belt is also subject to the belt tension restrictions. Therefore, some support is required; for example, the end of the motor shaft should be supported mechanically.

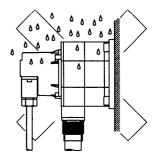
- (4) Actually, when using a timing belt, a possible fault like a broken shaft can be prevented by positioning the pulley as close to the bearing as possible.
- (5) When there is a possibility of a large load, the machine tool builder needs to examine the life by referring to the shaft diameter, bearing, etc.
- (6) Since the standard single row deep groove ball bearing is used for the motor bearing, a very large axial load can not be used. Particularly, when using a worm gear and a helical gear, it is necessary to provide another bearing.
- (7) The motor bearing is generally fixed with a C-snap ring, and there is a small play in the axial direction. When this play influences the positioning in the case of using a worm gear and a helical gear, for example, it is necessary to fix it with another bearing.

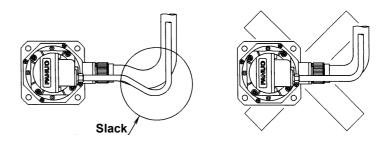

2.5 ENVIRONMENT

(1) Ambient temperature

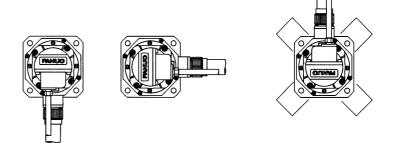
The ambient temperature should be -10 to 40° C. When operating the machine at a higher temperature, it is necessary to lower the output power so that the motor temperature does not exceed the specified constant value. (The values in the data sheet are determined for an ambient temperature of 20° C.)


- (2) Vibration When installed in a machine, the vibration applied to the motor must not exceed 5G.
- (3) Installation height


Up to 1,000 meters above the sea level requires, no particular provision for attitude. When operating the machine at a higher level, special care is unnecessary if the ambient temperature is lowered 1°C at every 100m higher than 1,000m. For example, when the machine is installed at a place of 1,500 meters above sea level, there is no problem if the ambient temperature is 35°C or less. For higher temperatures, it is necessary to limit the output power.

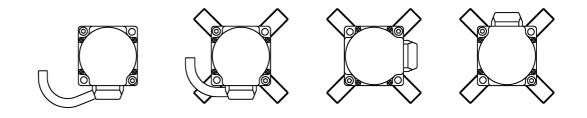

<u>B-65232EN/03</u> DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series

- (4) Drip-proof environment The protection form for a single motor unit satisfies IP65 of the IEC standards (equivalent to JP65, dust-proof and jet-proof type, of JIS C4004-1980, code for revolving electric machines) These standards, however, refer only to short-term performance. In actual operation, note also the following:
 - (a) Protect the motor surface from the cutting fluid or lubricant. Use a cover when there is a possibility of wetting the motor surface. Only the telescopic cover of the sliding part can not completely prevent leakage of the cutting fluid. Pay attention to the drop along the structure body, too.



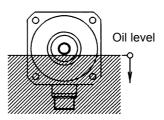
(b) Prevent the cutting fluid from being led to the motor through the cable. When the motor connector is used in the sideways position, put a drip loop in the cable.

(c) When the motor connector is up, the cutting fluid is collected in the cable connector through the cable. Turn the motor connector sideways or downward as far as possible. Most of the defects caused by the cutting fluid have occurred in the cable connector.


The standard receptacle on the motor side is waterproof. If the cable connector will be subjected to moisture, it is recommended that an R class or waterproof plug be used. Suitable plugs are listed in the cable plug combination recommendations in Chapter 9. (The standard MS plug is not waterproof; water is liable to enter the pin section.)

(d) The connectors and lead wires of power and signal lines of models β M0.2/4000 and β M0.3/4000 are not drip-proof. When a connector or lead wire must be drip-proof, the machine tool builder needs to provide drip protection.

If model β M0.2/4000 or β M0.3/4000 is exposed to coolant, for example, direct the lead wire outlet downward whenever possible. Moreover, do not install the shaft in the upward direction.


To prevent coolant from running to the motor through the cable, slack a part of the cable, for example, as a countermeasure.

B-65232EN/03 DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series

- (5) Shaft attachment section requirements The shaft of the motor has an oil seal to prevent foreign matter such as oil from entering the motor. Given that motors tend to be used in a wide range of environments, however, protection against oil penetration cannot always be perfect. Therefore, always observe the following precautions when using these motors.
 - When oil bath lubrication is provided for the gear engagement, for example, the oil level must be below the lip of the oil seal (where the shaft sticks to the oil seal). Set the oil level so that oil merely splashes the lip.
 - Thus, as the shaft rotates, the oil seal can repel oil. If, however, pressure is applied continuously while the shaft is stopped, oil may penetrate the lip.
 - When the shaft is always immersed in oil, for example, under the condition that the motor is to be used with the shaft oriented vertically a special design is required. For example, another oil seal could be installed on the machine side, and a drain provided so that oil penetrating that seal can drain off.
 - When grease is used for lubrication, the oil seal characteristics are usually lost.

In either case, ensure that no pressure is applied to the oil seal lip.

The motor shaft oil seal diameter is as shown below.

Motor model	Oil seal diameter
βΜ0.2/4000, βΜ0.3/4000	φ8mm
βΜ0.4/4000, βΜ0.5/4000, βΜ1/4000	φ14.9mm
β1/3000, β2/3000	φ15mm
β3/3000, β6/2000	φ24mm

2.6 ACCEPTANCE AND STORAGE

When the servo motor is delivered, check the following items.

- The motor meets the specifications. (Specifications of the model/shaft/detector)
- Damage caused by the transportation.
- The shaft is normal when rotated by hand.
- The brake works.
- Looseness or play in screws.

FANUC servo motors are completely checked before shipment, and the inspection at acceptance is normally unnecessary. When an inspection is required, check the specifications (wiring, current, voltage, etc.) of the motor and detector.

Store the motor indoors. However avoid storing in the following places.

- Place with high humidity so condensation will form.
- Place with extreme temperature changes.
- Place always exposed to vibration. (The bearing may be damaged.)
- Place with much dust.

The storage temperature is -20° C to $+60^{\circ}$ C.

3 **INSTRUCTIONS**

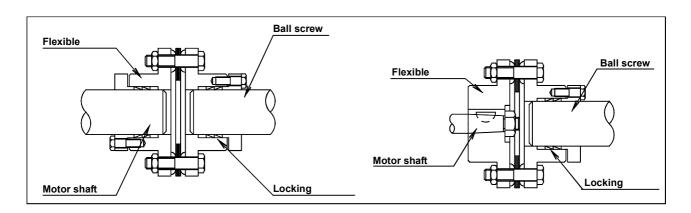
3.1 DRIVE SHAFT COUPLING

There are four methods for connecting the motor shaft to the ball screw:

- Direct connection through a flexible coupling
- Direct connection through a rigid coupling
- Connection through gears
- Connection through timing belts

It is important to understand the advantages and disadvantages of each method,

and select one that is most suitable for the machine.


- (1) Direct connection using a flexible coupling Direct connection by a flexible coupling has the following advantages over connection using gears:
 - A certain misalignment of the angle between the motor shaft and the ball screw can be compensated.
 - Because a flexible coupling connects elements with less backlash, driving noise from joints can be significantly suppressed.

However, this method has the following disadvantages:

- The misalignment of the center between the motor shaft and the ball screw is not permitted (in the case of single coupling).
- Loose assembly may result in lower rigidity.

When the motor shaft needs to be connected directly to the ball screw, connecting them using a flexible coupling facilitates adjustment and installation of the motor.

To use a single coupling, the machine needs to be designed so that the centers of the motor shaft and the ball screw are aligned. If it is difficult to align the centers, a double coupling needs to be employed.

- (2) Direct connection using a rigid coupling Direct connection using a rigid coupling has the following advantages over direct connection using a flexible coupling:
 - More economical
 - The coupling rigidity can be increased.
 - If the rigidity is the same as with a flexible coupling, the inertia can be reduced.

However, this method has the following disadvantages:

• The misalignment of the center and the angle between the motor shaft and the ball screw are not permitted strictly.

For this reason, a rigid coupling needs to be mounted very carefully.

It is desirable that the run-out of the ball screw is 0.01 mm or less. When a rigid coupling is used on the motor shaft, the runout of the hole for the ball screw must be set to 0.01 mm or less by adjusting the tightness of the span ring.

The run-out of the motor shaft and the ball screw in the radial direction can be adjusted or compensated to a little certain extent by deflection. Note, however, that it is difficult to adjust or measure misalignment in the angle. Therefore, the structure of the machine should be such that precision can be fully guaranteed.

(3) Gears

This method is used when the motor cannot be put in line with the ball screw because of the mechanical interference problem or when the reduction gear is required in order to obtain large torque. The following attention should be paid to the gear coupling method:

- Grinding finish should be given to the gear, and eccentricity, pitch error, tooth-shape deviations etc. should be reduced as much as possible. Please use the JIS, First Class as a reference of precision.
- Adjustment of backlash should be carefully performed. Generally, if there is too little backlash, a high-pitched noise will occur during high-speed operation, and if the backlash is too big, a drumming sound of the tooth surfaces will occur during acceleration/deceleration. Since these noises are sensitive to the amount of backlash, the structure should be so that adjustment of backlash is possible at construction time.

(4) Timing belt

A timing belt is used in the same cases as gear connection, but in comparison, it has advantages such as low cost and reduced noise during operation, etc. However, it is necessary to correctly understand the characteristics of timing belts and use them appropriately to maintain high precision.

Generally, the rigidity of timing belt is sufficiently higher than that of other mechanical parts such as ball screw or bearing, so there is no danger of inferiority of performance of control caused by reduction of rigidity by using timing belt. When using a timing belt with a position detector on the motor shaft, there are cases where poor precision caused by backlash of the belt tooth and pulley tooth, or elongation of belt after a long time becomes problem, so consideration should be given to whether these errors significantly affect precision. In case the position detector is mounted behind the timing belt (for example, on the ball screw axis), a problem of precision does not occur.

Life of the timing belt largely varies according to mounting precision and tension adjustment. Please refer to the manufacturer's Instruction Manual for correct use.

 (5) Connection between the straight shaft and a connecting element To use a straight shaft that has no key groove, connect the shaft with a coupling using a span ring.
 Because the grap ring connects elements by the friction

Because the span ring connects elements by the friction generated when the screw is tightened, it is free from backlash and the concentration of stress. For this reason, the span ring is highly reliable for connecting elements.

To assure sufficient transmission with the span ring, factors such as the tightening torque of the screw, the size of the screw, the number of screws, the clamping flange, and the rigidity of connecting elements are important. Refer to the manufacturer's specifications before using the span ring.

When a coupling or gear is mounted using the span ring, tighten the screws to remove a run-out of the coupling or gear including the shaft.

3.2 MACHINE MOVEMENT PER 1 REVOLUTION OF MOTOR SHAFT

The machine movement per 1 revolution of motor shaft must be determined at the first stage of machine design referring the load torque, load inertia, rapid traverse speed, and relation between minimum increment and resolution of the position sensor mounted on the motor shaft. To determine this amount, the following conditions should be taken into consideration.

- The machine movement per 1 revolution of motor shaft ("L") must be such that the desired rapid traverse speed can be obtained. For example, if the maximum motor speed is 1500 rpm and the rapid traverse speed must be 12 m/min., the amount of "L" must be 8 mm/rev. or higher.
- As the machine movement per 1 revolution of motor shaft is reduced, both the load torque and the load inertia reflected to motor shaft also decrease.
 Therefore, to obtain large thrust, the amount of "L" should be the lowest value at which the desired rapid traverse speed can be obtained.
- Assuming that the accuracy of the reduction gear is ideal, it is advantageous to make the machine movement per 1 rev. of motor shaft as low as possible to obtain the highest accuracy in mechanical servo operations. In addition, minimizing the machine movement per 1 rev. of motor shaft can increase the servo rigidity as seen from the machine's side, which can contribute to system accuracy and minimize the influence of external load changes.
- An optimum condition for the servo system is attained when the motor rotor inertia is equal to the load inertia reflected to the motor shaft. If the machine operation is characterized by repeated acceleration/ deceleration (for example, in a machine such as a punch press or print board drill), a heating problem may occur due to the current caused by acceleration and deceleration. Should this occur, specify the amount of machine movement per motor rotation so as to satisfy the optimum condition as much as possible.

4 SELECTING A MOTOR

When making a motor selection, select an optimal motor from the viewpoints of load conditions, feedrate, increment system, and so forth. This section describes how to calculate the load and other conditions, showing an example of a table with a horizontal axis.

Two types of loads are imposed on a motor: steady-state load torque such as friction, and load inertia (acceleration/deceleration torque). When selecting a motor, calculate these loads accurately, and check that the calculated values satisfy the selection conditions described below.

Condition 1

Check that the steady-state load torque at the time of idle machine feed is within 70% of the continuous rated torque of the motor.

Ensure that the steady-state load torque at rest time or very low speed operation time does not exceed 70% of the continuous rated torque. Even with the horizontal axis, the motor at rest time still generates a torque that matches the friction load, and the motor can overheat for a friction load at rest time.

Moreover, an influence such as viscosity can increase the steadystate load torque in the case of high-speed feed. So, check the steady-state load torque also at high-speed feed time.

Condition 2

Acceleration can be made with a desired time constant.

At the time of deceleration, in general, the steady-state load torque works to advance deceleration. So, if acceleration is possible, deceleration with the same time constant becomes possible. Calculate the acceleration torque and check that the torque required for acceleration is within the intermittent operating zone of the motor.

If the steady-state load torque is increased at high-speed feed time by an influence such as viscosity, the required acceleration torque should be increased in the same amount.

Condition 3

The frequency of positioning in rapid traverse satisfy to a desired value.

The greater the frequency of positioning in rapid traverse, the greater the ratio of acceleration time to the entire operation time. This may overheat the motor. When the acceleration time constant is increased according to the rapid traverse feedrate and positioning frequency constant, the amount of produced heat decreases in inverse proportion to the acceleration time constant.

Condition 4

If the load condition varies during a single cycle, the root-meansquare value of the torques is smaller than or equal to the rated torque.

Condition 5

The time for which the table can be moved (duty percentage and ON time) is within a desired range.

4.1 MOTOR SELECTION

When making a motor selection, select an optimal motor from the viewpoints of load conditions, rapid traverse rate, increment system, and so forth. To ensure satisfactory motor selection, the user should determine the conditions of use according to the servo motor selection data table given at the end of this section. Enter the necessary machine data (up to the external detector item) in the servo motor selection data table. If the customer sends it to FANUC, we will provide the remaining items, and check the customer-provided data. For details of each item in the servo motor selection data table, see the descriptions below.

4.1.1 Blanks for Those Other than Data

- Machine type
 Fill in this blank with a general name of machine tools, such as lathe, milling machine, machining center, and others.
- (2) Machine modelFill in this blank with the model name of machine tool decided by machine tool builder.
- (3) CNC model Fill in this blank with the name of CNC (16*i*-MB, 21*i*-TB, PM*i*-H, etc.) employed.
- (4) Axis name Fill in this blank with axis name practically employed in CNC command. If the number of axes exceeds 2 axes, enter them in the second sheet.
- (5) Blanks of version number, date, name, and reference number. These blanks are left blank by the FANUC.

4.1.2 Data Items to be Entered

The machine tool builder is to provide the following data: direction of movement, feed mechanism, mechanical specifications, and external position detector. If a particular specification value is desired, specify the value. FANUC will enter an appropriate value, considering the overall specification. Each item is described in detail below.

(1) Specifications of moving object

Data in this blank are used for determining the values of motor load conditions (inertia, torque). Fill in blanks of all items.

(a) Direction of movement Enter the movement directions of driven parts such as table, tool post, etc. Write the angle from the horizontal level, if their movement directions are slant (Example : Slant 60°) Whether their movement directions are horizontal or vertical (or slant) is necessary for calculating the regenerative energy. Fill in this blank without fail.
(b) Weight of the moving object Enter the weight of driven parts such as table, tool post

Enter the weight of driven parts, such as table, tool post, etc. by the maximum value including the weight of workpiece, jig, and so on. Do not include the weight of the counter balance in the next item in this item.

(c) Counter balance
 Enter the weight of the counter balance in the vertical axis, if provided.

Write the force in case of hydraulic balance.

(d) Table support

Enter the type of table slide as to rolling, sliding, or static pressure type. If a special slide way material like Turcite is used, note it.

(2) Feed mechanism

Enter values for whichever items are pertinent.

(a) Ball screw

Enter the diameter, pitch, and length of the ball screw in order.

- (b) Rack and pinion Enter the pinion diameter and amount of travel for the
- machine tool, per revolution of the pinion.(c) Others

When using a feed mechanism other than the above, provide details of the mechanical section, and enter a travel amount for the machine tool.

(3) Mechanical specifications

Data in this blank serve as the basis for selecting the motor. Enter these data correctly.

(a) Travelling distance of machine per revolution of the motor Enter the travelling of the machine when the motor rotates one turn.

Example 1)

When the pitch of ball screw is 12 mm and the gear ratio is 2/3,

 $12(mm) \times 2/3 = 8(mm)$

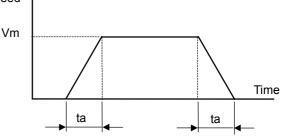
Example 2)

When the gear ratio is 1/72 in rotary table ; $360(deg) \times 1/72 = 5(deg)$

(b) Total gear ratio

Enter the gear ratio between the ball screw and the servo motor, gear ratio between the final stage pinion and the servo motor in case of the rack pinion drive, or gear ratio between the table and the motor in case of rotary table.

(c) Inertia


Enter a load inertia value reflected to the motor shaft. It is not always necessary to enter this inertia value in detail. Enter it as a 2-digit value. Example) $0.2865 \rightarrow 0.29$

Do not include any inertia of the motor proper in this value.

- (d) Least input increment of CNC Enter the least input increment of CNC command.
- (e) Maximum rapid traverse feedrate Enter a maximum rapid traverse feedrate according to the mechanical specifications.
- (f) Motor speed in rapid traverse The motor speed in the maximum rapid traverse feedrate is entered.
- (g) Acceleration/deceleration time in rapid traverse The acceleration/deceleration time is determined according to the load inertia, load torque, motor output torque, and working speed.

The acceleration/deceleration mode at rapid traverse is generally linear acceleration/deceleration in FANUC's CNC.

Speed

(h) Distance of positioning in rapid traverse Enter the amount of travel when positioning during rapid traverse.

- (i) Frequency of positioning in rapid traverse Enter the rapid traverse positioning frequency by the number of times per minute. This value is used to check if the motor is overheated or not by a flowing current during acceleration / deceleration or to check the regenerative capacity of the amplifier.
 (j) Steady-state load torque
- At low speed

The steady-state load torque at low-speed feed time may be applied even while the motor is at rest. So, the steadystate load torque needs to have a sufficient margin relative to the continuous rated torque of the motor. Set a steady-state load torque so that it is within 70% of

the continuous rated torque.

• At rapid traverse

As the steady-state load torque at rapid traverse time, enter the torque applied when a movement is made at steady-state rapid traverse rate. Do not include any torque required for acceleration/deceleration in this item.

(k) Backlash

Enter the backlash amount between the motor and the final driven part like table by converting it into the move amount of the table.

(4) External detector

This item is required to determine the servo system stability under the influence of an external position detector, mounted on the motor. When configuring a servo system using a linear scale, always enter this data.

(a) External position detector

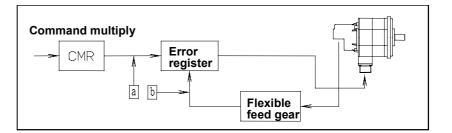
If you want to mount an external position detector outside the motor, specify the name of the detector and its detection unit. If you want to use a rotary detector such as a resolver or rotary encoder, enter the following items in the "remarks" column.

• Resolver :

Move amount of machine tool per revolution of resolver Number of wave lengths per revolution of resolver

- Rotary encoder : Move amount per revolution of pulse coder Number of pulses (per revolution) Gear diameter and reduction ratio
- (5) Motor specifications
 - (a) Motor model, Feedback (FB) type

Enter the model name of the motor employed and the specifications of the built-in feedback unit by using symbols.


(b) Option

Enter optional specifications, if any, in this blank.

4.SELECTING A MOTOR DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series B-65232EN/03

- (6) Data to be provided by FANUC
 - (a) Input multiply ratio, command multiply ratio, and flexible feed gear ratio

The NC set values required for moving the machine tool at the least input increment values are entered in these blanks. The relation among these values as illustrated below.

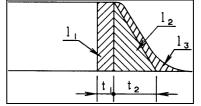
In the above figure, each ratio is set so that the units of the two inputs (a and b) of the error register are the same. The β pulse coder uses a flexible feed gear as standard. So, CMR is normally set to 1. When other than 1 is to be set for CMR, contact FANUC for details.

For the flexible feed gear (F.FG), the ratio of the number of position pulses required per motor shaft revolution to the number of feedback pulses is set.

The set value is obtained as follows:

F.FG=(Number of position pulses requiredper motor shaft revolution)/1,000,000

NOTE

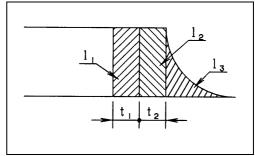

The maximum permissible value for both the numerator and denominator is 32,767. So, the fraction should be reduced to its lowest terms. after which the resultant numerator and denominator should be set.

Example)

Suppose that the NC uses increments of 0.01mm, the machine travel distance per motor shaft revolution is 8 mm, and pulse coder β A32B is used. F.FG=(8/0.01)/1,000,000=800/1,000,000=1/1250,

CMR=1

- (b) Position loop gain Fill in this blank with a value which is considered to be settable judging it from the inertia value based on experiences. Since this value is not always applicable due to rigidity, damping constant, and other factors of the machine tool, it is usually determined on the actual machine tool. If the position detector is mounted outside the motor, this value is affected by the machine tool rigidity, backlash amount, and friction torque value. Enter these values without fail.
 - (c) Deceleration stop distance and dynamic brake stop distance In these items, the coasting distance of the machine tool at the machine tool stroke end is entered. Usually, a stroke end consists of two limit stages. The stage-1 limit triggers a deceleration stop, while the stage-2 limit triggers a dynamic brake stop. When the stage-1 limit is tripped, the displayed position exactly matches the stop position of the machine tool. When the stage-2 limit is tripped, the position data is lost. The stage-2 limit is designed to stop the machine tool if the machine tool becomes uncontrollable and runs away. Therefore, always install a stage-2 limit to protect the machine tool from damage.
 - Deceleration stop distance Enter the coasting distance when the machine tool is decelerated and stopped at the stroke end.



- V_m : Rapid traverse rate, mm/min or rev/min
- l_1 : Coasting distance due to delay time t_1 of receiver
- l_2 : Coasting distance due to deceleration time t_2
- l₃ : Servo deflection amount
- t₁ : Usually about 0.02 seconds

Coasting distance = $Vm/60 \times (t_1+t_2/2+1/ks)$ (mm or deg) ks : Position loop gain (sec⁻¹)

• Dynamic brake stop distance

This is coasting distance when the machine tool is stopped by dynamic braking with both ends of the motor power line shorted, if the machine tool is in trouble.

- V_m : Rapid traverse rate, mm/min or rev/min
- l_1 : Coasting distance due to delay time t_1 of receiver
- l_2 : Coasting distance due to deceleration time t_2 of magnetic contactor (MCC)
- l₃ : Coasting distance by dynamic braking after magnetic contactor has been operated
- (t1+t2) is usually about 0.05 seconds.

Coasting distance =

 $Vm/60 \times (t_1+t_2)+(J_m+J_L) \times (AN_0+BN_0^3) \times L(mm \text{ or deg})$

- J_m : Motor inertia (kg·cm·s²)
- J_L : Load inertia (kg·cm·s²)
- N_0 : Motor speed at rapid traverse (min⁻¹)
- L : Machine movement on one-rotation of motor (mm or deg)

 $N_0 = V_m$

A and B are constants that vary with the model of the motor being used. The values for each model are listed under "Coefficients for Calculating the Dynamic Brake Stopping Distance."

(d) Specifications of amplifier, regenerative discharge unit, and transformer

For these items, the specifications of the servo amplifier and transformer to be used are entered. Enter a desired amplifier model, if any, as the remarks item.

B-65232EN/03 DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series 4.SELECTING A MOTOR

Motor model	Α	В	J _m (kgfcms ²)
βM0.2/4000	8.1×10 ⁻¹	5.7×10 ⁻⁸	1.9×10 ⁻⁵
βM0.3/4000	3.4×10 ⁻¹	4.5×10 ⁻⁸	3.5×10⁻⁵
βM0.4/4000	2.2×10 ⁻¹	4.5×10 ⁻⁸	1.0×10 ⁻⁴
βM0.5/4000	8.8×10 ⁻²	2.0×10 ⁻⁸	1.8×10 ⁻⁴
βM1/4000	3.7×10 ⁻²	8.7×10 ⁻⁹	3.5×10 ⁻⁴
β1/3000	4.8×10 ⁻²	5.7×10 ⁻⁸	3.4×10 ⁻³
β2/3000	1.9×10 ⁻²	3.1×10 ⁻⁸	6.7×10 ⁻³
β3/3000	9.7×10 ⁻³	2.4×10 ⁻⁸	2.0×10 ⁻²
β6/2000	3.9×10⁻³	1.2×10 ⁻⁸	4.0×10 ⁻²

(7) Coefficients for calculating the dynamic brake stop distance

The values of A and B are calculated by assuming that the resistance of the power line is 0.05 Ω per phase. The values will vary slightly according to the resistance value of the power line. These values are coefficients applicable when α and αi series servo amplifiers are combined. Depending on the servo amplifier used, each value slightly varies.

MTB		Servo motor selection d	lata table (models for	oositioning)					
Machine ty	/pe	Machine model							
CNC mode		FANUC Name							
		·							
Item			Axis name	Т					
	ons of mov	ing object							
		ient (horizontal, vertical, slant degrees, re	otation)						
		ng object (including the workpiece)	kg						
	Interbalance kg								
		ng contact, rolling contact, static pressure)							
	al coefficien		(*)						
		lect one of the following and enter the corr							
		eter \times pitch \times length	mm						
		Diameter of pinion, traveling distance per							
3 Others									
	al specificat	tions							
		tion pattern, if already determined, in the r	emarks field.)						
		of the machine per revolution of the motor							
Total ge									
		e deceleration" or "applied to the motor sh	aft.") kgfcms ²	1					
		ent of CNC (resolution)	mm						
		verse feedrate	mm/min	1					
	eed in rapi		min ⁻¹	1					
Accelera	ation/decele	eration time in rapid traverse	msec	1					
		ning in rapid traverse	mm						
		oning in rapid traverse	frequency/min	1					
	state load	At low speed time	kgfcm	1					
torque		At rapid traverse time	kgfcm	1					
Backlasl	h		mm						
Fill in these	e blanks wl	hen an external detector is used.	(**)						
Type of	external po	sition detector (detection unit, number of p	oulses, etc.)						
		reduction ratio when a rotary encoder is u							
Motor spec	cifications	*							
Motor m	odel (desire	ed size and output, if any)							
		absolute position detector is required)							
Option (when a bra	ke, non-standard shaft, etc. is required)							
FANUC wi									
Commar	nd multiplie	r	CMR						
Detectio	n multiplier		DMR						
Flexible	feed gear		FFG						
Position	loop gain		sec ⁻¹						
	ation stop c	listance	mm						
Dynamic	brake stop	o distance	mm						
Specifica	ations of ar	nplifier							
Regener	rative disch	arge unit							
Specifica	ations of tra	ansformer							
	(*) Note t	he friction coefficient of the sliding surface	if it is determined.						
		ernal position detector is required when:							
Note		positions of the motor and machine may b	e mechanically displace	d, for example	 by slippage of 				
		ving tire or an elongated driving chain.							
ļ	(Exa	mple: Expansion of chain when chain is dr							
			Version	Date	Name				
Domorka			3						
Remarks			2						
			1	1 1					
L	1			A.Ar-1870-					
		FANUC LTD	,	A.AI-10/U-					

4.2 CHARACTERISTIC CURVE AND DATA SHEET

Performance of each motor model is represented by characteristic curves and data sheet shown below.

4.2.1 Characteristic Curves

The typical characteristic curves consist of the following.

(1) Speed-torque characteristics

These are known as operating curves and describe the relationship between the output torque and rotation speed of the motor. The motor can be operated continuously at any combination of speed and torque within the prescribed continuous operating zone. To use the motor outside this zone, obtain an operating condition from an overload duty curve, and use the motor intermittently. The limit of continuous operating zone is determined under the following conditions.

- The ambient temperature for the motor is 20°C.
- The drive current of the motor is pure sine wave.

The limit of the intermittent operating zone is determined by the rated input voltage (200 V) applied to the drive unit. So, the limit may change, depending on the voltage applied to the drive unit. The torque in the continuous operating zone and intermittent

operating zone decreases by 0.19% with the β series or by 0.11% with the β M series for each temperature increase of 1°C beyond 20°C due to the negative temperature coefficient of the magnet material.

(2) Overload duty characteristic

This is known as a duty cycle curve and used to calculate the ON time (during which the motor can be powered) and OFF time (during which the motor must be kept at a rest to get cooled) for the motor to run intermittently without becoming overheated. This curve is determined by the limit of motor temperature. However, the curve may also depend on the thermal protection function of the drive unit and control unit.

See Section 4.2.3 for how to calculate the ON and OFF times.

4.2.2 Data Sheet

The data sheet gives the values of motor parameters relating to the performance.

The values of parameters are those under the following conditions.

- The ambient temperature for the motor is 20°C.
- The drive current of the motor is pure sine wave.

Important parameters on the data sheet are defined as follows :

- (a) Continuous RMS current at stall : Is (Arms) This current represents a maximum effective current that can continuously run the motor at low speed.
- (b) Torque constant : Kt (kgf·cm/Arms)

This constant represents a torque value generated by the motor for a phase current of 1 ampere.

The torque constant decreases by 0.19% with the β series or by 0.11% with the β M series for each temperature increase of 1°C beyond 20°C due to the negative temperature coefficient of the magnet material.

The torque constant is a function of the total flux and the total number of conductors in the armature.

The back EMF constant (Kv) and the torque constant are interrelated as follows :

Kt (kgf·cm/Arms)=30.6 Kv (Volt·sec/rad)

Thus if Kv is reduced due to demagnetization of the magnet, Kt is also reduced in the same proportion.

(c) Back EMF (electromotive force) constant : Kv (Volt·sec/rad)

A back EMF is a voltage that is generated by rotating a servo motor with external mechanical force. The back EMF constant of a motor represents the relationship between the number of conductors in the armature of the motor and the amount of flux in the field magnet. The back EMF constant is also a parameter representing the intensity of a permanent magnet. The relationship can be given as.

 $(Volt \cdot sec/rad) = (volt/min^{-1}) \times 9.55$

Back EMF constant is indicated as the RMS voltage per phase, so multiply $\sqrt{3}$ to get actual terminal voltage.

(d) Mechanical time constant : tm (sec)

This is a function of the initial rate of rise in velocity when a step voltage is applied. It is calculated from the following relationship.

tm=(Jm×Ra)/(Kt×Kv)

Jm : Rotor inertia (kgf·cm·sec²)

Ra : Resistance of the armature (Ω)

(e) Thermal time constant : tt (min)

This is a function of the initial rate of rise of winding temperature at rated current. It is defined as the time required to attain 63.2 percent of the final temperature rise.

(f) Static friction : $Tf(kgf \cdot cm)$

This is the no-load torque required just to rotate the rotor.

4.2.3 How to Use Overload Duty Curves

The servo motor can be driven out of the continuous operating zone, but intermittently. Duty characteristics shows the Duty (%) and the "ON" time in which motor can be operated under the given overload conditions. The ON and OFF times of a motor are conditioned using the following procedure.

<1> Calculate Torque percent by formula below.

TMD=Load torque/Continuous rated torque

The ON time for a motor can be specified within the torque percent.

<2> Calculate "OFF" time by formula.

 $t_F = t_R \times (100/\text{Duty percent-1})$

- t_F : "OFF" time
- t_R : "ON" time

Example)

lt	f it is necessary to run the β 2/3000 under a load of
3	0 kgf⋅cm at very low speed:
E	Because the rated torque of the β 2/3000 is 20
k	gf⋅cm:
Т	orque percent: TMD = 30/20 = <u>1.5 (150%)</u>
F	From the overload duty curve of the $\beta 2/3000$:
Ľ	Duty percent of the motor when it runs with TMD =
1	50% for five minutes is: <u>About 37%</u>
(DFF time: t _F = 5 × (100/37 - 1) [≛] 8.5 min
A	After the motor runs under the above conditions,
t	herefore, it must be kept at a stop for at least 8.5
n	ninutes.

The drive amplifier also incorporates a thermal protection device such as a circuit breaker or thermal circuit. The thermal protection device may additionally limit the operation of the motor. In addition, a software function protects the motor and amplifier from short-term overload. The function may limit the operation of the motor.

5.1 REQUIREMENTS FOR COMPLIANCE

This section describes the conformity of the FANUC AC SERVO MOTOR β series and β M series to the IEC34 standard. The IEC34 standard can be satisfied by using a motor having a nameplate bearing a TÜV mark and satisfying the conditions below.

5.1.1 Drive Unit

The motor must be driven by the FANUC AC SERVO AMPLIFIER β series, αi series, or α series.

5.1.2 Connector

Motor power lines and brake units must be connected using the connectors listed below.

Motor mo	Motor model		Connector specification [FANUC specification]	Special tool specification [FANUC specification]	Manufacturer
	Power	Straight type	Connector body : 54983-0000 Contact : 56052-8100 [A06B-6114-K230#S] (FANUC specification) (The connector body and contact are contained in the same pack.)		
βM0.4/4000 βM0.5/4000 βM1/4000 Brake	rower	Elbow type	(The connector body and contact are contained	[A06B-6114-K234#C]	MOLEX
	Straight type	Connector body : 54982-0000 Contact : 56052-8100 [A06B-6114-K232#S] (FANUC specification) (The connector body and contact are contained in the same pack.)	Pull-out tool 57406-6000 [A06B-6114-K234#R]	JAPAN Co., Ltd.	
	Бгаке	Elbow type	Connector body : 55766-0000 Contact : 56052-8100 [A06B-6114-K232#E] (FANUC specification) (The connector body and contact are contained in the same pack.)		

[BM series]

▲ WARNING For grounding, a wire with a cross-sectional area equal to or greater than that of U, V, or W must be used.

5.IEC34 STANDARD

DESCRIPTIONS FOR FANUC AC SERVO MOTOR β series B-65232EN/03

			[β series]		
Motor model		Plug connector specification [FANUC specification]			
β1/3000 β2/3000	Power	Straight type L type	H/MS3106A18-10S-D-T(10) [A63L-0001-0648/61810SH] H/MS3108A18-10S-D-T(10) [A63L-0001-0648/81810SH]	H/MS3057-10A(10) [A63L-0001-0592/10AK]	HIROSE ELECTRIC
β3/3000 β6/2000	Brake	Straight type L type	JL04V-6A10SL-3SE-EB [A63L-0001-0648/610SL3SJ] JL04V-8A10SL-3SE-EB [A63L-0001-0648/810SL3SJ]	JL-04-1012CK-(07) [A63L-0001-0653/04A]	Japan Aviation Electronics Industry

For grounding, a wire with a cross-sectional area equal to or greater than that of U, V, or W must be used.

NOTE

The plug connectors do not feature a cable clamp.

TÜV has certified that the plug connectors and cable clamps above, when combined with the FANUC AC SERVO MOTOR β series, satisfy the VDE0627 safety standard.

In addition to the plug connectors above, connector manufacturers offer TÜV-compliant connectors. For compliance of these connectors with the safety standard when combined with the FANUC AC SERVO MOTOR β series, check with each connector manufacturer. Moreover, contact each connector manufacturer for details of each series.

Manufacturer	Product series name
HIROSE ELECTRIC	H/MS310 TÜV-compliant series
Japan Aviation Electronics Industry	JL04V series
DDK Ltd.	CE05 series

5.2 APPROVAL SPECIFICATIONS

5.2.1 Rotational Speed (IEC34-1)

Each model's maximum allowable speed is as shown below.

The maximum allowable speeds are determined from the viewpoint of speed alone within the range in which the certification condition for satisfying the IEC34 standard is observed. The characteristics at a maximum allowable speed are not guaranteed.

Motor model	Rated speed (min ⁻¹)	Maximum allowable speed (min ⁻¹)
βM0.4/4000	4000	5000
βM0.5/4000	4000	5000
βM1/4000	4000	5000
β1/3000	3000	4000
β2/3000	3000	4000
β3/3000	3000	4000
β6/2000	2000	3000

(*) The maximum allowable speeds are applicable only when HRV control is used for driving.

5.2.2 Output (IEC34-1)

The rated output is guaranteed as continuous output only at the rated output speed.

Output in the intermittent operating zone is not specified. The certified output value of each model is indicated below.

Motor model	Rated output (W)
βM0.4/4000	125
βM0.5/4000	200
βM1/4000	400
β1/3000	300
β2/3000	500
β3/3000	500
β6/2000	900

5.2.3 Protection Mode (IEC34-5)

Motor model IP Approval condition		Approval condition
βM0.4/4000		
βM0.5/4000	65	A specified connector needs to be used.
βM1/4000		
β1/3000		
β2/3000	65	A specified connector and waterproof cover (signal
β3/3000	05	lines) need to be used.
β 6/2000		

The protection mode defined by IEC34-5 is as follows:

IP6x : Complete dust-proof machine Structure that completely prevents dust from penetrating

IPx5 : Machine tool protected against water spray
 Water, sprayed randomly onto the machine tool through a nozzle, must not adversely affect the operation of the machine tool.

The IPx5 mode test conditions are as follows:

• Inner nozzle diameter	6.3mm
• Volume of water	12.51/min
• Water pressure at nozzle	30kPa
• Injection time per unit surface area (1 m ²)	1 minute
• Minimum test time	3 minutes or more
• Distance between nozzle and machine tool	About 3 m

As described above, IPx5 evaluates a machine tool by means of a short-term test using water, assuming that the machine tool is dried after being sprayed with water. Note that the use of a liquid other than water or the continuous application of water, such that the machine tool is not allowed to dry, can adversely affect the machine tool even if the other aspects of the test are less severe.

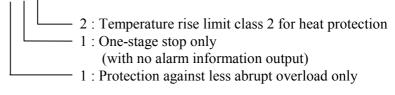
5.2.4 Cooling Method (IEC34-6)

The following motor cooling method is to be used:

Motor model	IC code	Method
βM0.4/4000		
βM0.5/4000		
βM1/4000		
β1/3000	IC410	Totally enclosed, natural
β2/3000		air-cooling
β3/3000		
β6/2000		

5.2.5 Installation Method (IEC34-7)

A motor can be installed using any of the following methods:


- IMB5 : The motor is installed by using a flange, with the shaft oriented horizontally (from the back).
- IMV1 : The motor is installed by using a flange, with the shaft oriented upwards (from the back).
- IMV3 : The motor is installed by using a flange, with the shaft oriented downwards (from the back).

5.2.6 Heat Protection (IEC34-11)

The heat protection mode defined in IEC34-11 is as follows:

Motor model	Code	Method	
IB6/2000 LIP112		Indirect protection of windings by means of a	
		thermal cut-out	

TP112

NOTE

- 1 Heat protection is not defined for models other than the model indicated above.
- 2 Each model is software-protected against an abrupt overload.

6 EMC DIRECTIVE

The β series servo motors comply with the EMC directive.

To make the entire machine compliant to the EMC directive, the necessary measures must be taken according to the guideline published by FANUC (document No.: A-72937E).

TFEEDBACK DETECTOR

7.1 BUILT-IN DETECTOR

All servo motors feature a pulse coder (optical rotary encoder). The pulse coder outputs position information and an alarm signal.

The βM series motors incorporate pulse coders designed to the specifications listed below.

Pulse coder type	Resolution (Division/rev)	Absolute/ incremental	Applicable motor
Pulse coder βA64B	65,536	Absolute	All models in βM series motor
Pulse coder β I64B	65,536	Incremental	All models except βM0.2/4000 and βM0.3/4000

The β series motors incorporate pulse coders designed to the specifications listed below.

Pulse coder type	Resolution (Division/rev)	Absolute/ incremental	Applicable motor
Pulse coder βA32B	32,768	Absolute	
Pulse coder βI32B	32,768	Incremental	All models in β series motor

NOTE

The β series pulse coders can be connected to an NC if the NC is fitted with the serial interface, and the digital servo software for the α pulse coders is installed.

7.2 ABSOLUTE-TYPE PULSE CODER

When the CNC is turned off, the pulse coder position detection function is backed up by battery. So, when the CNC is next turned on, the operator does not have to perform reference position return. For backup, a battery unit for back-up must be installed in the NC or

servo amplifier. If a low-battery indication appears on the CNC, renew the battery as

If a low-battery indication appears on the CNC, renew the battery as soon as possible.

Replace the battery while the CNC is turned on.

7.3 EXTERNAL POSITION DETECTOR

For detecting a position by attaching directly to a ball screw or a machine, use an external (separate type) position detector. Pay attention to the following items when using the external position detector.

- (1) Increase the machine rigidity between the servo motor and the position detector to minimize mechanical vibration. If the machine rigidity is low or the structure vibrates, poor performance is likely to occur.
- (2) Generally, when the separate type detector is used, the influence of gear, ball screw pitch error or table inclination is decreased and the positioning accuracy and geometrical accuracy (roundness, etc.) are increased, but the smoothness may deteriorate due to the elasticity in the machine between the servo motor and the position detector.
- (3) Positioning precision is equivalent to the resolution of the builtin pulse coder, even if the resolution of the external position detector is higher than that of the built-in pulse coder.
- (4) To connect the external position detector to the CNC, connect only the signals described in the connecting manual. (Phase A, Phase B, Phase Z, 0V, 5V and REQ if necessary)
- (5) The specifications of the FANUC external position detector are given in the descriptions (B-65142E) of the α series servo motors.

7.4 DETECTOR SIGNAL OUTPUT

	motor output signals and the signals on each model's connectors.						
Motor model	βM0.2/4000 βM0.3/4000	βM0.4/4000 βM0.5/4000 βM1/4000		β1/3000 β2/3000 β3/3000 β6/2000			
Pulse coder type	βA64B	βA64B	βl64B	β A 32B	βI32B		
Signal name		Pin nı	umber				
SD *SD	A4 B4	2 1	2 1	12 13	12 13		
REQ *REQ	A3 B3	6 5	6 5	5 6	5 6		
+5V 0V	A2,B2 A1,B1	8,9 7,10	8,9 7,10	8,15 1,2,3	8,15 1,2,3		
+6V 0VA	A5 -	4		14 10	-		
Connector pin assignment			3 <u>7</u> 10 5		8 0 0 0 0 15		

The following table lists the pin assignment of the β series servo motor output signals and the signals on each model's connectors.

BUILT-IN BRAKE

 β series servo motors have models that contain a holding brake to prevent falling of a vertical axis.

Motors with a built-in brake have different outlines and weight from other types of motors. For their outlines, refer to Part II or Part III.

The servo motor incorporates a brake which is applied to lock the shaft while the power is turned off, and which is released while the power is turned on.

8.1 BRAKE SPECIFICATIONS

The specifications of built-in brakes for βM series servo motors are listed below.

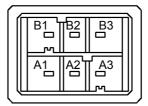
ltem		Unit	βM0.2/4000 βM0.3/4000	βM0.4/4000 βM0.5/4000	βM1/4000
Droke terry	-	Nm	0.32	0.65	1.2
Brake torqu	е	kgf⋅cm	3.3	6.6	12
Response	Release	msec	40	40	40
time	Brake	msec	20	20	20
Supply volta	age	V (±10%)	24 VDC		
Current		Α	0.3 or lower	0.5 or lower	0.5 or lower
Weight increase		kgf	Approx. 0.22	Approx. 0.4	Approx. 0.4
Inertia increase		kgm ² kgfcms ²	2×10 ⁻⁶ 2×10 ⁻⁵	9×10 ⁻⁶ 9×10 ⁻⁵	9×10 ⁻⁶ 9×10 ⁻⁵

The values specified above are standard values at 20°C.

The specifications of built-in brakes for β series servo motors are listed below.

ltem		Unit	β1/3000 β2/3000	β3/3000 β6/2000
Droke terry		Nm	2	8
Brake torqu	le	kgf⋅cm	20	82
Response	Release	msec	60	70
time E	Brake	msec	20	30
Supply volta	age	V (±10%)	90 VDC	
Current		Α	0.3 or lower	0.4 or lower
Weight increase		kgf	Approx. 1.5	Approx. 2.3
Inertia increase		kgm ² kgfcms ²	2×10 ⁻⁵ 2×10 ⁻⁴	7×10⁻⁵ 7×10⁻⁴

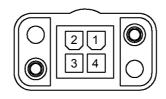
The values specified above are standard values at 20°C.



The built-in brake is used as a holding brake to prevent axis dropping at servo-off time. Though the built-in brake functions as braking in the case of an emergency stop or power outage, however, the built-in brake cannot be used to brake and shorten the stop distance at ordinary deceleration time. Moreover, while the motor is excited, the built-in brake cannot be used as an auxiliary mechanism for holding the motor.

8.2 FIGURES OF CONNECTORS

The figures and pin arrangements of brake connectors are shown below.


[Models β M0.2 and β M0.3]

Connection : B2=BK, B3=BK (Connected to the power connector) (A1=U, A2=V, A3=W, B1=GND)

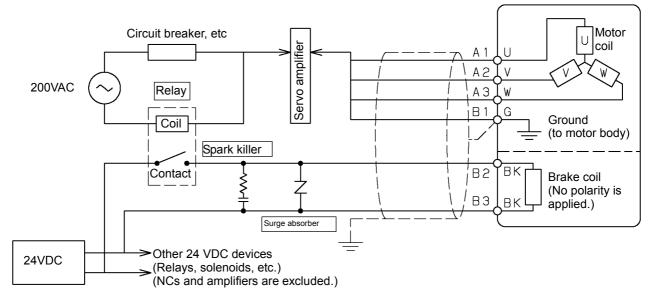
Connect the brake power to BK. No polarity is applied to brakes.

[Models β M0.4, β M0.5, and β M1]

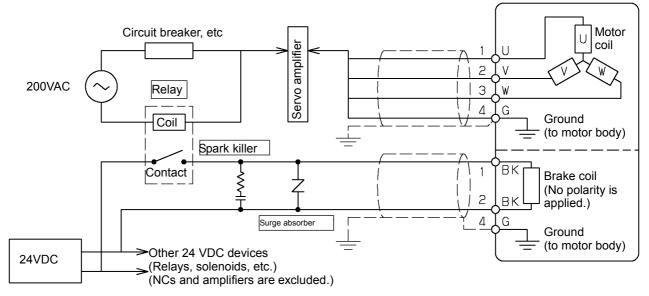
Connection : 1=BK, 2=BK, 4=GND

Connect the brake power to BK. No polarity is applied to brakes.

[Models $\beta 1$ to $\beta 6$]


Connection : A=BK, B=BK, C=GND

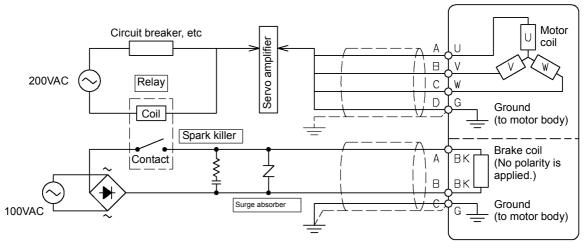
Connect the brake power to BK. No polarity is applied to brakes.


8.3 CONNECTION OF THE BRAKES

Configure a brake circuit by referencing the brake connection diagram, notes, and recommended components described below.

[Models β M0.2 and β M0.3]

[Models β M0.4, β M0.5, and β M1]


Notes

- (1) Use 24 VDC as the brake power for the β M series servo motor. AC power decreased by a transformer and full-wave rectified to 24 Vrms can also be used.
- (2) For the brake power, use a power system different from the 24 V power for CNC and amplifier control. If the power for CNC and amplifier control is shared as the brake power, the CNC and amplifier can malfunction. The power for peripheral devices such as relays and solenoids may be shared. In this case, however, pay attention to the power supply capacity and voltage variation due to load variation.
- (3) When full-wave rectification is used, perform transformation to generate a secondary voltage of 29 VAC at the time of brake conduction, considering a voltage drop in the rectifier and cable. In this case, carefully check the power supply capacity and supply voltage variation and ensure that the variation in voltage applied to the brake at conduction time is within 24 Vrms $\pm 10\%$. Be sure to prepare and select the suitable input taps on the primary side of the transformer according to the power supply voltage, such as 100-110-120 VAC or 200-220-240 VAC.
- (4) When the contact is set on the DC side (position shown in the figure), the life of the contact is generally reduced due to a surge voltage generated at brake-off time. Ensure that the contact has a sufficient capacity. Moreover, use a surge absorber and spark killer to protect the contact.
- (5) The brake coil has no polarity. When making a brake coil connection, the user need not be concerned with the positive and negative poles of the power.
- (6) Use a shielded cable as required.

The table below indicates the recommended components and specifications of the brake circuit for the βM series servo motor.

ltem	Stock number	Manufacture	Specification	FANUC specification
Switch	-	-	Rated capacity 250 VAC, 10 A or more	-
Surge absorber	ERZV10D820	Matsushita Electric Industrial Co., Ltd.	Varistor voltage 82 V Maximum allowable voltage 50 VAC	-
Spark killer	XEB0471	Okaya Electric Industries Co., Ltd.	47Ω/0.1μF Breakdown voltage 400 V or more	-
Rectifier	D3SB60	Shindengen Electric Manufacturing Co., Ltd.	Breakdown voltage 400 V or more Maximum output current 2.3 A (with no fin)	A06B-6050-K112

[Models β 1 to β 6]

Notes

- (1) Use a full-wave rectified power of 100 VAC or use 90 VDC as the brake power for the β series servo motor. Do not use a half-wave rectified power of 200 VAC, because brake components such as a surge absorber can be damaged.
- (2) When full-wave rectification is used, carefully check the power supply capacity and supply voltage variation and ensure that the variation in voltage applied to the brake at conduction time is within 90 Vrms $\pm 10\%$.

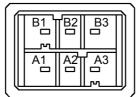
Be sure to prepare and select the suitable input taps on the primary side of the transformer according to the power supply voltage, such as 100-110-120 VAC or 200-220-240 VAC.

- (4) When the contact is set on the DC side (position shown in the figure), the life of the contact is generally reduced due to a surge voltage generated at brake-off time. Ensure that the contact has a sufficient capacity. Moreover, use a surge absorber and spark killer to protect the contact.
- (5) The brake coil has no polarity. When making a brake coil connection, the user need not be concerned with the positive and negative poles of the power.
- (6) Use a shielded cable as required.

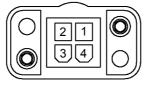
The table below indicates the recommended components and specifications of the brake circuit for the β series servo motor.

Item	Stock number	Manufacture	Specification	FANUC specification
Switch	-	-	Rated capacity 500 VAC, 5 A or more	
Surge absorber	ERZV20D221	Matsushita Electric Industrial Co., Ltd.	Varistor voltage 220 V Maximum allowable voltage 140 VAC	A06B-6050-K113
Spark killer	S2-A-0	Okaya Electric Industries Co., Ltd.	500Ω/0.2μF Breakdown voltage 400 V or more	-
Rectifier	D3SB60	Shindengen Electric Manufacturing Co., Ltd.	Breakdown voltage 400 V or more Maximum output current 2.3 A (with no fin)	A06B-6050-K112

9.1 SPECIFICATIONS OF MOTOR CONNECTORS

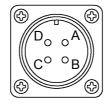

With the FANUC AC SERVO MOTOR β series, TÜV-approved connectors are used for power and brake to ensure conformity with the IEC34 standard.

The table below indicates the specifications of the connectors on the motor side.

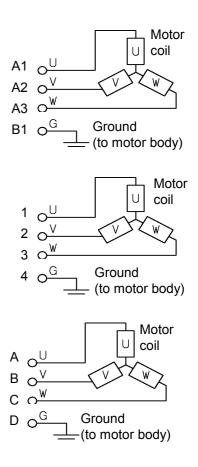

Motor model	For power	For signal	For brake
βM0.2/4000 βM0.3/4000	3-179554-3 (tyco Electronics AMP)	1-1318115-6 (tyco Electronics AMP)	Shared in power line connector
βM0.4/4000 βM0.5/4000 βM1/4000	55618-0401 (MOLEX JAPAN Co., Ltd.)	JN1AS10UL1 (Japan Aviation Electronics Industry)	55619-0401 (MOLEX JAPAN Co., Ltd.)
β1/3000 β2/3000 β3/3000 β6/2000	H/MS3102A18-10P- D-T(10) (HIROSE ELECTRIC)	SDAB-15P (HIROSE ELECTRIC)	JL04V-2A10SL-3P-B (Japan Aviation Electronics Industry)

The figures and pin arrangements of power connectors are shown below.

[Models β M0.2, β M0.3]



3-179554-3 [Models βM0.4, βM0.5, βM1]



55618-0401

[Models $\beta 1$ to $\beta 6$]

3102A 18-10P

The standard receptacle connectors for models $\beta 1$ to $\beta 6$ do not exactly satisfy the MS standard in that the connectors are waterproof as single units, and their exterior color is black. However, their sizes and shapes are compatible with the conventional round-type connectors conforming to the MS standard.

Accordingly, in addition to the products recommended below, plug connectors conforming to the MS standard can also be used. (When the water-resistance of the system is of prime importance, the waterproof plug connectors recommended.

Direct motor connectors downwards whenever possible. When a motor connector must be directed horizontally, provide sufficient cable slack to prevent, for example, the connector from being wetted by liquid such as coolant. The connectors on the β M0.2 to β M0.3 motors are not water-proof. The machine tool builder is requested to make some provision to protect the connectors from water and moisture. In any case, if a motor connector is exposed to liquid, protection by means of a cover, for example, must be provided.

If the motor in not grounded via the machine (cabinet) on which it is mounted, connect a wire between the terminal to which the motor ground cable is connected and that to which the amplifier ground cable is connected, to suppress noise. In such a case, use a wire of at least 1.25mm², independently of the ground wire within the power cable, and route it as far away from the power cable as possible.

9.2 β M0.2 AND β M0.3 CONNECTORS ON CABLE SIDE

9.2.1 Specifications of β M0.2 and β M0.3 Connectors for Power and Brake

The specifications of the power connector (cable side) for β M0.2 and β M0.3 are indicated below.

The connector is certified by TÜV.

The connector is not drip-proof.

	For both power and brake	
Housing specification	3-178129-6	
(tyco Electronics AMP)	(D-3200M Receptacle housing 6 poles XY)	
Contact specification	1-175218-2	
(tyco Electr <u>onics AMP)</u>	(D-3 Receptacle contact L)	
Applicable	0.5 to 1.25 mm ²	
wire size	0.5 to 1.25 mm	
Wire insulator	or in the second se	
outside	φ1.8 to 2.8 mm	
diameter		

The connector kit for power and brake indicated below is available.

	For both power and brake	
Connector kit specification (FANUC specification)	n A06B-6114-K240	
Connector kit components	Receptacle housing (3-178129-6) × 1	
Connector kit components	Receptacle contact D-3 L (1-175218-2) \times 6	

The table below indicates the tools dedicated to the connector.

	Applicable contact	tyco Electronics AMP specification	FANUC specification
Crimping tool	For D-3 contact of L size	914596-3	A06B-6110-K220#D3L
Pull-out tool	For D-3 contact	234168-1	A06B-6110-K220#D3R

NOTE

The contacts of the connectors are so structured that the wire and insulator are crimped together. So, be sure to observe the specified insulator diameter. Other types of wires may be usable, depending on wire and tool. For details, consult with the connector manufacturer.

9.2.2 Specifications of βM0.2 and βM0.3 Connectors for Signal

The specifications of the signal connector (cable side) for β M0.2 and β M0.3 are indicated below.

The connector is not drip-proof.

	ne connector is not drip-proof.				
		For signal			
sp	Housing pecification Electronics AMP)	1-1318118-6 (D-2100D Receptacle housing 12 poles)			
-	Contact pecification Electronics AMP)	1318107-1 (D-2 Receptacle contact M) (D-2 Receptacle Solution (D-2 Rece		(D-2 Receptacle	
	Applicable wire size	0.18 to 0.5 mm ² 0.3 to 0.85 mm ²		0.08 to 0.2 mm ²	
	Wire insulator outside diameter	φ0.88 to 1.5 mm	φ1.1 to 1.87 mm	φ0.88 to 1.5 mm	
	Applicable crimping tool	1463475-1 (Dedicated crimping tool)	1276654-1 (D-2 M Standard crimping tool))	1276653-1 (D-2 S Standard crimping tool)	

The connector kit for signal indicated below is available.

	For signal	
Connector kit specification (FANUC specification)	A06B-6114-K241	
Connector kit	Receptacle housing(1-1318118-6)×1	
components	Receptacle contact D-2 M (1318107-1)×12	

The table below indicates the tools dedicated to the connector.

	Applicable contact	tyco Electronics AMP specification	FANUC specification
Crimping tool	For D-2 contact of M size (Dedicated crimping tool suitable for wire size from 0.18 to 0.5 mm ²)	1463475-1	A06B-6114-K242
	For D-2 contact of M size	1276654-1	A06B-6110-K220#D2M
	For D-2 contact of S size	1276653-1	-
Pull-out tool	For D-2 contact	1276716-1	A06B-6110-K220#D2R

NOTE

When the recommended wire (wire size from 0.18 to 0.5 mm²) is used only with D-2 contact of M size, the dedicated crimping tool indicated above is necessary.
 When the standard crimping tool for the D-2 contact is used, check the wire size and type of contact used, and the specifications of the crimping tool, and use the crimping tool within the allowable range.
 The contacts of the connectors are so structured that the wire and insulator are crimped together. So, be sure to observe the specified insulator diameter. Other types of wires may be usable, depending on wire and tool. For details, consult with the connector manufacturer.

9.3 β M0.4 TO β M1 CONNECTORS ON CABLE SIDE

9.3.1 Specifications of β M0.4 to β M1 Connectors for Power and Brake

The specifications of the power and brake connectors (cable side) for β M0.4 to β M1 are indicated below. The connector is certified by TÜV.

The connector is defined by 10° . The connector is drip-proof when fitted.

		For power	For brake
Connector body	Straight	54983-0000	54982-0000
specification (MOLEX JAPAN Co., L	.td.) Elbow	55765-0000	55766-0000
Contact specifi (MOLEX JAPAN 0		56052	2-8100
	Applicable wire size	0.75 to 1.05 mm ² (<i>i</i>	AWG18 to AWG17)
١	Wire insulator outside diameter		or lower
	Applicable cable outside diameter	φ9.1 to φ9.8 mm	φ6.2 to φ6.7 mm

The connector kit for power and brake indicated below is available.

		For power	For brake
Connector kit	Straight	A06B-6114-K230#S	A06B-6114-K232#S
specification (FANUC specification)	Elbow	A06B-6114-K230#E	A06B-6114-K232#E
Connector kit components		Connector body \times 1 Contact \times 4	Connector body \times 1 Contact \times 3

The table below indicates the tools dedicated to the connector.

	MOLEX JAPAN specification	FANUC specification
Crimping tool	57406-5000	A06B-6114-K234#C
Pull-out tool	57406-6000	A06B-6114-K234#R

NOTE

The contacts of the connectors are so structured that the wire and insulator are crimped together. So, be sure to observe the specified insulator diameter. Other types of wires may be usable, depending on wire and tool. For details, consult with the connector manufacturer.

9.3.2 Specifications of βM0.4 to βM1 Connectors for Signal

The specifications of the signal connector (cable side) for β M0.4 and βM1 are indicated below.

The connector is drip-proof when fitted.

		For signal	
Connector body	Straight	JN1DS10SL2	JN1DS10SL1
specification (Japan Aviation Electronics Industry	Elbow	JN1FS10SL2	JN1FS10SL1
Contact specif	ication		
(Japan Aviation E		JN1-22-	-22S
Industry	()		
		AWG21 (0.5mm ² , Strand structure	
Applicable wire		20/0.18)	
size		AWG25 (0.18mm ² , Strand structure	
		7/0.18)	
V	Vire insulator		
outside		φ1.5 mm c	or lower
	diameter		
	Applicable		
	cable outside	φ6.5 to 8.0 mm	φ5.7 to 7.3 mm
	diameter		

The connector kit for signals indicated below is available.

	For signal	
Connector kit	Straight	A06B-6114-K200#S
specification (FANUC specification)	Elbow	A06B-6114-K200#E
Connector kit components		Connector body \times 1
		(Two types of bushing, one for ϕ 6.5 to
		8.0 and the other for ϕ 5.7 to 7.3, are
		included.)
		Contact × 10

The table below indicates the tools dedicated to the connector.

	Japan Aviation Electronics Industry specification	FANUC specification
Crimping tool	CT150-2-JN1-F	A06B-6114-K201#JN1L
Pull-out tool	ET-JN1	A06B-6114-K201#JN1R

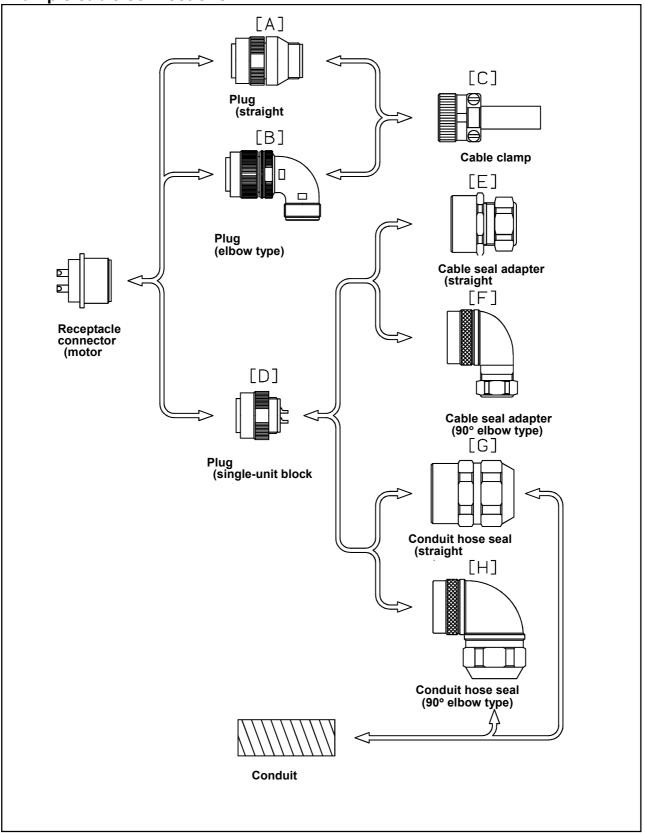
NOTE

The contacts of the connectors are so structured that the wire and insulator are crimped together. So, be sure to observe the specified insulator diameter. Other types of wires may be usable, depending on wire and tool. For details, consult with the connector manufacturer.

9.4 β 1 TO β 6 CONNECTORS ON CABLE SIDE

9.4.1 Specifications of β 1 to β 6 Connectors for Power and Brake (TÜV-certified and Waterproof Type)

To satisfy the IEC34 standard, the TÜV-certified waterproof plug connectors and cable clamps indicated below need to be used for power line and brake unit connection.


If the IEC34 standard needs to be satisfied when a cable seal adapter or conduit hose seal adapter is used, consult with the connector manufacturers.

Connector type	For power	For brake
[A] Plug connector (Straight type)	H/MS3106A18-10S-D-T(10) (HIROSE ELECTRIC)	JL04V-6A10SL-3SE-EB (Japan Aviation Electronics Industry)
[B] Plug connector (Elbow type)	H/MS3108A18-10S-D-T(10) (HIROSE ELECTRIC)	JL04V-8A10SL-3SE-EB (Japan Aviation Electronics Industry)
[C] Cable clamp	H/MS3057-10A(10) (HIROSE ELECTRIC)	JL04-1012CK-(07) (Japan Aviation Electronics Industry)

For [A] to [C], see "Example of cable connections" below.

NUTE
TUV has certified that the plug connectors and
cable clamps above, when combined with the
FANUC AC SERVO MOTOR β series, satisfy the
VDE0627 safety standard.
In addition to the plug connectors above, connector
manufacturers offer TÜV-compliant connectors.
For compliance of these connectors with the safety
standard when combined with the FANUC AC
SERVO MOTOR β series, check with each
connector manufacturer. Moreover, contact each
connector manufacturer for details of each series.
- HIROSE ELECTRIC (HRS) :
H/MS310 TUV-compliant series
 Japan Aviation Electronics Industry (JAE) :
JL04V series

- DDK Ltd. (DDK) : CE05 series

Example cable connections

9.4.2 Specifications of β1 to β6 Connectors for Power and Brake (Not TÜV-compliant and Waterproof Type)

When the IEC34 standard need not be satisfied, the waterproof plug connectors and cable clamps (not TÜV-compliant) indicated below can be used for power line and brake unit connection.

Connector type	For p	ower	For bra	ake
[A] Plug connector (Straight type)	H/MS3106A18-10S(10) JA06A-18-10S-J1-EB (Japan Aviatic MS3106A18-10S-B-BSS	(HIROSE ELECTRIC) on Electronics Industry) (DDK Ltd.)	H/MS3106A10SL-3S(10) JA06A-10SL-3S-J1-EB (Japan Aviat MS3106A10SL-3S-B-BSS	(HIROSE ELECTRIC) tion Electronics Industry) (DDK Ltd.)
[B] Plug connector	H/MS3108B18-10S(10) JA08A-18-10S-J1-EB		H/MS3108B10SL-3S(10) JA08A-10SL-3S-J1-EB	(HIROSE ELECTRIC)
(Elbow type)	(Japan Aviatic) MS3108A18-10S-B-BAS	on Electronics Industry) (DDK Ltd.)	(Japan Aviat MS3108A10SL-3S-B-BAS	tion Electronics Industry) (DDK Ltd.)
[C] Cable clamp	H/MS3057-10A(10) JL04-18CK(13) (Japan Aviatic CE3057-10A-1(D265)	(HIROSE ELECTRIC) on Electronics Industry) (DDK Ltd.)	H/MS3057-4A(10) JL04-1012CK-(05) (Japan Aviat CE3057-4A-1(D265)	(HIROSE ELECTRIC) tion Electronics Industry) (DDK Ltd.)
[D] Plug connector	H/MS3106A18-10S(13) JA06A-18-10S-J1-(A72)	(HIROSE ELECTRIC)	H/MS3106A10SL-3S(13) JA06A-10SL-3S-J1-(A72)	(HIROSE ELECTRIC)
(Single-unit block type)	(Japan Aviatic) MS3106A18-10S-B(D190	on Electronics Industry)0)(DDK Ltd.)	(Japan Avia MS3106A10SL-3S-B(D190)	tion Electronics Industry) (DDK Ltd.)
[E]	YSO 18-12-14 ACS-12RL-MS18F	(Daiwa Dengyou) (Japan Flex)	YSO 10-5-8	(Daiwa Dengyou)
[F]	YLO 18-12-14 ACA-12RL-MS18F	(Daiwa Dengyou) (Japan Flex)	YLO 10-5-8	(Daiwa Dengyou)
[G]	BOS 18-15 RCC-104RL-MS18F	(Daiwa Dengyou) (Japan Flex)	BOS 9-10	(Daiwa Dengyou)
[H]	BOL 18-15 RCC-304RL-MS18F	(Daiwa Dengyou) (Japan Flex)	BOL 9-10	(Daiwa Dengyou)

For [A] to [H], see the cable connection examples.

By combining a plug connector (single-unit block type) with an adapter ([D]+([E] to [H]) in "Example cable connection"), cable and connector waterproofness can be enhanced.

The connector and seal adapters indicated above are compatible with products based on the MS standard. So, those products compatible with the MS standard that are not listed above are also usable.

For details of each of the connectors above, check with each connector manufacturer.

9.4.3 Specifications of β1 to β6 Connectors for Power and Brake (Not TÜV-compliant and Non-waterproof Type)

When the IEC34 standard need not be satisfied, and waterproofness is not required, the non-waterproof plug connectors and cable clamps (not TÜV-compliant) indicated below can be used for power and brake.

Connector type	For po	wer	For brake		
		· ,	H/MSA3106A10SL-3S(10)	(HIROSE ELECTRIC)	
Plug connector	MS3106B18-10S-(A72)		MS3106B10SL-3S-(A72)		
•	(Japan Aviatio	on Electronics Industry)	(Japan Aviation Electronics Industry)		
(Straight type)	MS3106B18-10S-B	(DDK Ltd.)	MS3106A10SL-3S-B	(DDK Ltd.)	
[D]	H/MSA3108B18-10S(10)	(HIROSE ELECTRIC)	H/MSA3108B10SL-3S(10)	(HIROSE ELECTRIC)	
[B]	MS3108B18-10S-(A72)		MS3108B10SL-3S-(A72)		
Plug connector	(Japan Aviatio	on Electronics Industry)	(Japan Aviation Electronics Industry)		
(Elbow type)	MS3108B-18-10S-B	(DDK Ltd.)	MS3108A10SL-3S-B	(DDK Ltd.)	
	H/MSA3057-10A(10)	(HIROSE ELECTRIC)	H/MSA3057-4A(10)	(HIROSE ELECTRIC)	
[C]	MS3057-10A-(A72)		MS3057-4A-(A72)		
Cable clamp °	(Japan Aviatio	n Electronics Industry)	(Japan Avia	tion Electronics Industry)	
	MS3057-16A(D265)	(DDK Ltd.)	MS3057-4A(D265)	(DDK Ltd.)	

For [A] to [C], see the cable connection examples.

NOTE Be sure to use a waterproof connector where waterproofness is required.

9.4.4 Specifications of β 1 to β 6 Connectors for Signal

D-sub connectors are used as standard for the signal lines of the models $\beta 1$ to $\beta 6$. The D-Sub connectors are not water-proof.

To ensure waterproofness, a special connector cover is required.

The specifications of the cable-side special connectors are given below.

Item	Manufacturer	FANUC specification
Connector kit (The D-Sub connector and water-proof cover are packaged together.)	-	A06B-6050-K115
D-Sub connector (female)	HDAB-15S (Soldering type) (HIROSE ELECTRIC)	A63L-0001-0434/AB15SNO
Waterproof cover	HDAW-15CV (HIROSE ELECTRIC)	A63L-0001-0496

II. FANUC AC SERVO MOTOR $\beta \textbf{M}$ series

TYPES OF MOTORS AND DESIGNATION

The types and specifications of βM series servo motors are described as follows.

Models

 $\beta M0.2/4000$ and $\beta M0.3/4000$

A06B-011<u>x</u>-B<u>yzz</u>

<u>X</u>	1 2	:	
У		:	
<u>ZZ</u>			

75 : With the pulse coder β A64B

Models $\beta M0.4/4000,\,\beta M0.5/4000,\,$ and $\beta M1/4000$

A06B-011<u>x</u>-B<u>yzz</u>

<u>X</u>			
	4	:	Model βM0.4/4000
	5	:	Model βM0.5/4000
	6	:	Model βM1/4000
У			
•	0	:	Straight shaft
	1	:	Straight shaft with a 24VDC brake
ZZ			
	75	:	With the pulse coder β A64B
	77		With the mulae as der RICAD

77 : With the pulse coder β I64B

<u>1.TYPES OF MOTORS AND DESIGNATION</u> FANUC AC SERVO MOTOR β series B-65232EN/03

NOTE

- 1 The resolution of the β A64B and β I64B pulse coders is 65,536/rev.
- 2 The standard shafts used for β M series motor are straight shafts. Use a straight shaft as far as circumstances, such as the delivery time and maintenance, permit.
- 3 To specify a straight shaft with a key, suffix the motor specification with #0008.

B-65232EN/03 FANUC AC SERVO MOTOR β series 2. SPECIFICATIONS AND CHARACTERISTICS

2 SPECIFICATIONS AND CHARACTERISTICS

2.1 TYPE OF MOTORS AND SPECIFICATIONS

Item	Unit	βM0.2/4000	βM0.3/4000	β M0.4/4000	βM0.5/4000	βM1/4000
Output	W	50	100	125	200	400
Output	HP	0.07	0.13	0.17	0.3	0.5
Batad targua at atall	Nm	0.16	0.32	0.4	0.65	1.2
Rated torque at stall	kgfcm	1.6	3.2	4.0	6.6	12
Rated rotation speed	min⁻¹	4000	4000	4000	4000	4000
Maximum rotation speed	min ⁻¹	5000	5000	5000	5000	5000
Deter in ortio	kgm ²	0.0000019	0.0000034	0.00001	0.000018	0.000034
Rotor inertia	kgfcms ²	0.000019	0.000035	0.0001	0.00018	0.00035
Weight	kg	0.33	0.44	0.8	1.0	1.5

NOTE

The above values are under the condition at 20°C.

2.2 CHARACTERISTIC CURVE AND DATA SHEET

See Section 4.2 of Part I of this manual for details of each item.

(1) Speed - torque characteristics

Typical characteristics of speed and output torque are indicated. The data curve shown in this specification is for the rated input voltage (200V). Note, however, that the intermittent operating zone varies with the input voltage of the driving unit.

(2) Overload duty characteristic

The overload duty characteristic curves are determined based on the temperature restriction for the single motor unit (such as protection based on a thermal protector). The curves are determined by assuming that the temperature increases gradually under certain overload conditions. Therefore, the curves do not apply to the rapid temperature rise which occurs, for example, when an overcurrent flows in the motor windings until the thermal trip operates.

A thermal software function is provided to prevent an abrupt temperature rise in the motor by monitoring for abnormal current in the motor. This function may put a thermal limit to the operation of the motor when it is frequently accelerated and decelerated.

Driving units (such as amplifiers) contain their own overheating protection devices. Therefore, note that the operation of motor may be limited according to thermal limit of driver.

(3) Data sheet

The parameters given in the data sheet are representative values for an ambient temperature of 20°C. They are subject to an error of $\pm 10\%$.

The indicated logical values are threshold values for the single motor unit (when the motor is not restricted by the control system).

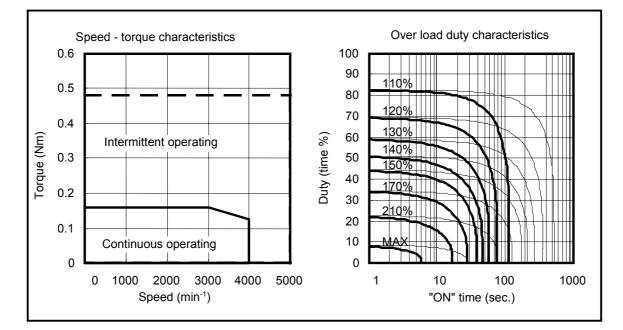
The maximum torque that can be produced during acceleration or deceleration is temporarily calculated as the approximate product of the motor torque constant and the current limit value of the amplifier.

Example : $\beta M0.5/4000$

Motor torque constant = 0.22(Nm/Arms)

Amplifier limit value = 20Apeak

Maximum torque value = $20 \times 0.707 \times 0.22 = 3.1$ (Nm)


 \uparrow (Converted to an effective value)

However, this value is a theoretical value. So, the actual maximum torque depends on the motor, amplifier, servo software, and power supply used. Particularly when a maximum current flows through the motor, the actual maximum torque can be far less than a calculated value due to an influence such as magnetic saturation.

The data curve of speed-torque characteristics indicates typical data obtained by combining a motor with an amplifier actually. It is requested to make a study based on the data curve.

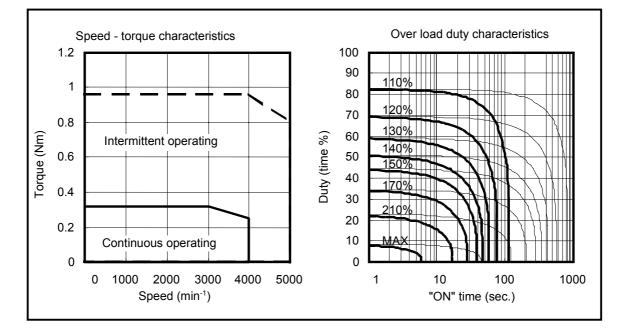
2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Model βM0.2/4000

Specification : A06B-0111-Bxxx

Data sheet

Parameter	Symbol	Value	Unit	
Rating rotation speed	Nmax	4000	min ⁻¹	
Rated torque at stall (*)	Ts	0.16 1.6	Nm kgfcm	
Rotor inertia	Jm	0.0000019 0.000019	kgm ² kgfcms ²	
Continuous RMS current at stall (*)	ls	0.84	A(rms)	
Torque constant (*)	Kt	0.19 1.9	Nm/A(rms) kgfcm/A(rms)	
Back EMF constant (1-phase) (*)	Ke Kv	6.7 0.064	V(rms)/1000min ⁻¹ V(rms)sec/rad	
Armature resistance (1-phase) (*)	Ra	6.0	Ω	
Mechanical time constant	tm	0.0009	s	
Thermal time constant	tt	5	min	
Static friction	Tf	0.02 0.2	Nm kgfcm	
Mass		0.33	kg	


(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

The speed-torque characteristics very depending on the type of software, parameter setting, and input voltage of the digital servo motor. (The above figures show average values.) These values may be changed without prior notice.

NOTE

The data above indicates torque characteristics obtained when HRV2 control is used for driving. When HRV1 control and an I/O link β amplifier are used for driving, the intermittent operating zone is limited.

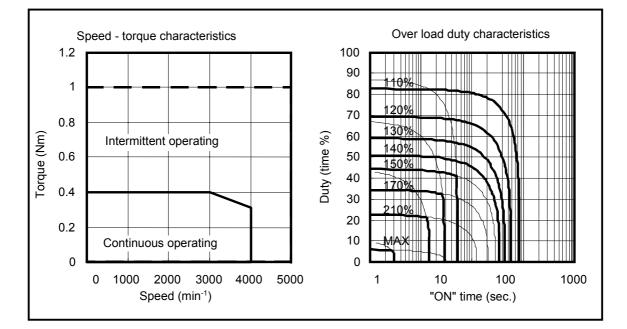
Model βM0.3/4000

Specification : A06B-0112-Bxxx

Data sheet

Parameter	Symbol	Value	Unit	
Rating rotation speed	Nmax	4000	min ⁻¹	
Rated torque at stall (*)	Ts	0.32 3.3	Nm kgfcm	
Rotor inertia	Jm	0.0000034 0.000035	kgm ² kgfcms ²	
Continuous RMS current at stall (*)	ls	0.84	A(rms)	
Torque constant (*)	Kt	0.38 3.9	Nm/A(rms) kgfcm/A(rms)	
Back EMF constant (1-phase) (*)	Ke Kv	13 0.13	V(rms)/1000min ⁻¹ V(rms)sec/rad	
Armature resistance (1-phase) (*)	Ra	10	Ω	
Mechanical time constant	tm	0.0007	s	
Thermal time constant	tt	8	min	
Static friction	Tf	0.02 0.2	Nm kgfcm	
Mass		0.44	kg	

(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.


The speed-torque characteristics very depending on the type of software, parameter setting, and input voltage of the digital servo motor. (The above figures show average values.) These values may be changed without prior notice.

NOTE

The data above indicates torque characteristics obtained when HRV2 control is used for driving. When HRV1 control and an I/O link β amplifier are used for driving, the intermittent operating zone is limited.

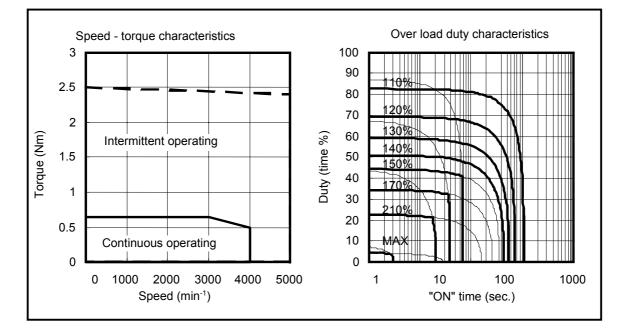
2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Model βM0.4/4000

Specification : A06B-0114-Bxxx

Data sheet

Parameter	Symbol	Value	Unit
Rating rotation speed	Nmax	4000	min ⁻¹
Rated torque at stall (*)	Ts	0.4	Nm
Rotor inertia	Jm	4.1 0.00001 0.0001	kgfcm kgm ² kgfcms ²
Continuous RMS current at stall (*)	ls	3.5	A(rms)
Torque constant (*)	Kt	0.12 1.2	Nm/A(rms) kgfcm/A(rms)
Back EMF constant (1-phase) (*)	Ke Kv	4.0 0.038	V(rms)/1000min ⁻¹ V(rms)sec/rad
Armature resistance (1-phase) (*)	Ra	0.5	Ω
Mechanical time constant	tm	0.001	s
Thermal time constant	tt	8	min
Static friction	Tf	0.04 0.4	Nm kgfcm
Mass		0.8	kg


(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

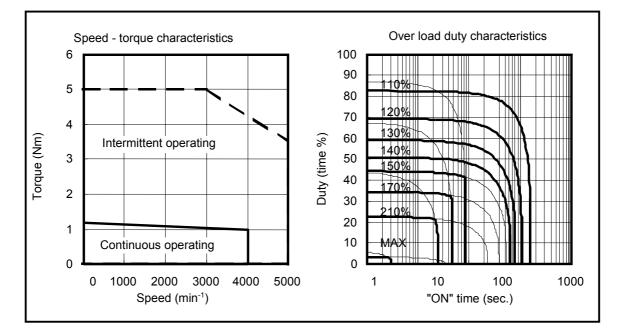
The speed-torque characteristics very depending on the type of software, parameter setting, and input voltage of the digital servo motor. (The above figures show average values.) These values may be changed without prior notice.

NOTE

The data above indicates torque characteristics obtained when HRV2 control is used for driving. This motor cannot be driven by HRV control and I/O Link β amplifier.

Model βM0.5/4000

Specification : A06B-0115-Bxxx

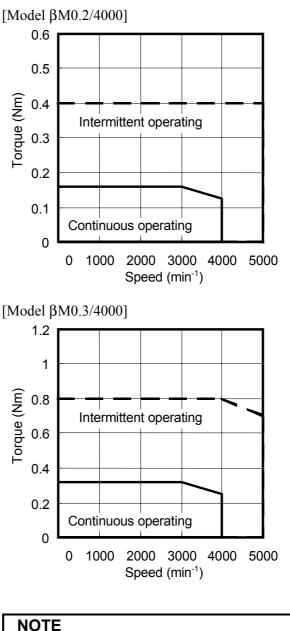

Data sheet

Parameter	Symbol	Value	Unit
Rating rotation speed	Nmax	4000	min ⁻¹
Rated torque at stall (*)	Ts	0.65 6.6	Nm kgfcm
Rotor inertia	Jm	0.000018 0.00018	kgm ² kgfcms ²
Continuous RMS current at stall (*)	ls	3.0	A(rms)
Torque constant (*)	Kt	0.22 2.3	Nm/A(rms) kgfcm/A(rms)
Back EMF constant (1-phase) (*)	Ke Kv	7.7 0.074	V(rms)/1000min ⁻¹ V(rms)sec/rad
Armature resistance (1-phase) (*)	Ra	0.9	Ω
Mechanical time constant	tm	0.0009	s
Thermal time constant	tt	10	min
Static friction	Tf	0.04 0.4	Nm kgfcm
Mass		1.0	kg

(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Model BM1/4000


Specification : A06B-0116-Bxxx

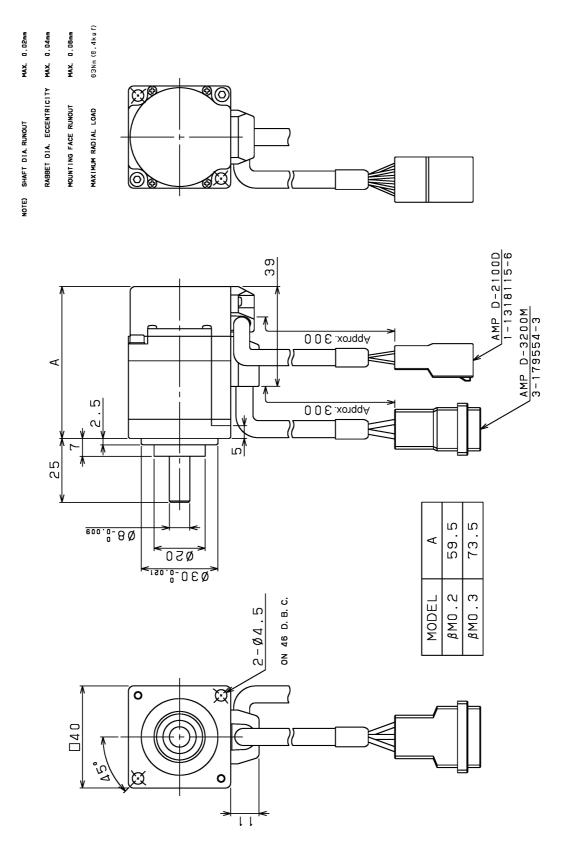
Data sheet

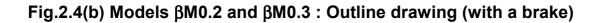
Parameter	Symbol	Value	Unit	
Rating rotation speed	Nmax	4000	min ⁻¹	
Rated torque at stall (*)	Ts	1.2 12	Nm kgfcm	
Rotor inertia	Jm	0.000034 0.00035	kgm ² kgfcms ²	
Continuous RMS current at stall (*)	ls	2.7	A(rms)	
Torque constant (*)	Kt	0.44 4.5	Nm/A(rms) kgfcm/A(rms)	
Back EMF constant (1-phase) (*)	Ke Kv	15.4 0.14	V(rms)/1000min ⁻¹ V(rms)sec/rad	
Armature resistance (1-phase) (*)	Ra	1.6	Ω	
Mechanical time constant	tm	0.0007	s	
Thermal time constant	tt	15	min	
Static friction	Tf	0.04 0.4	Nm kgfcm	
Mass		1.5	kg	

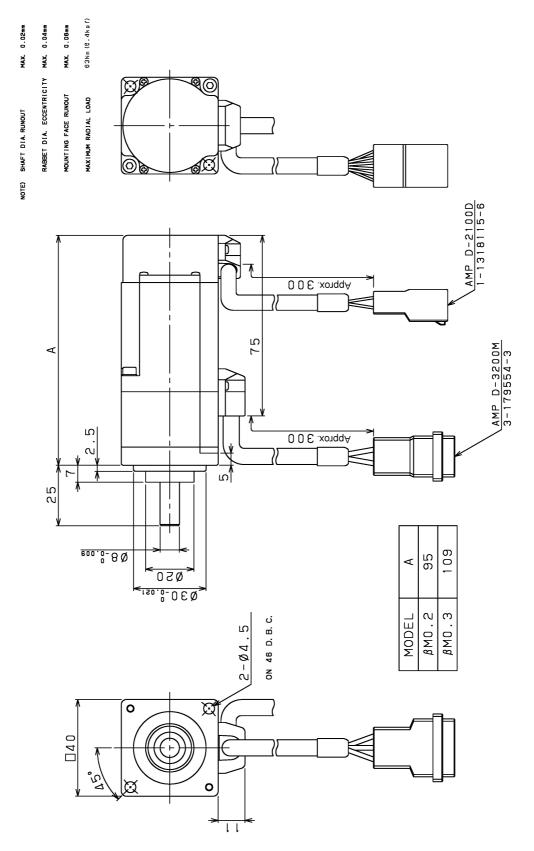
(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

2.3 SPEED-TORQUE CHARACTERISTICS WHEN HRV1 CONTROL AND AN I/O Link β AMPLIFIER ARE USED

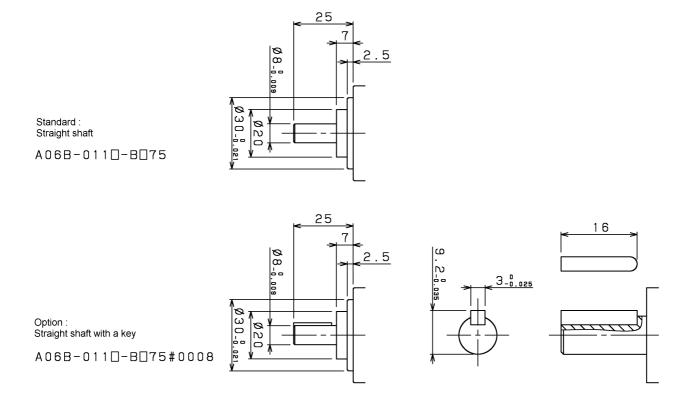
HRV2 control may not be usable with some CNC systems.

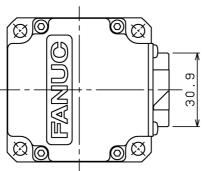

When HRV1 control and an I/O link β amplifier are used, the intermittent operating zone is limited. The continuous operating zone is equivalent to that applicable when HRV2 control is used.


$\underline{\textbf{2.SPECIFICATIONS AND CHARACTERISTICS}_{FANUC AC SERVO MOTOR \beta \text{ series } B-65232EN/03}$


2.4 OUTLINE DRAWINGS

Model	Fig. No.
Models β M0.2 and β M0.3 : Outline drawing (standard)	Fig.2.4(a)
Models β M0.2 and β M0.3 : Outline drawing (with a brake)	Fig.2.4(b)
Models β M0.2 and β M0.3 : Shaft option	Fig.2.4(c)
Models β M0.4, β M0.5, and β M1 : Outline drawing (standard)	Fig.2.4(d)
Models β M0.4, β M0.5, and β M1 : Outline drawing (with a brake)	Fig.2.4(e)
Models β M0.4 and β M0.5: Shaft option	Fig.2.4(f)
Models βM1: Shaft option	Fig.2.4(g)
Models β M0.4, β M0.5, and β M1 : Connector mating diagram (elbow)	Fig.2.4(h)
Models β M0.4, β M0.5, and β M1 : Connector mating diagram (straight)	Fig.2.4(i)





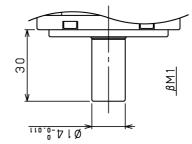
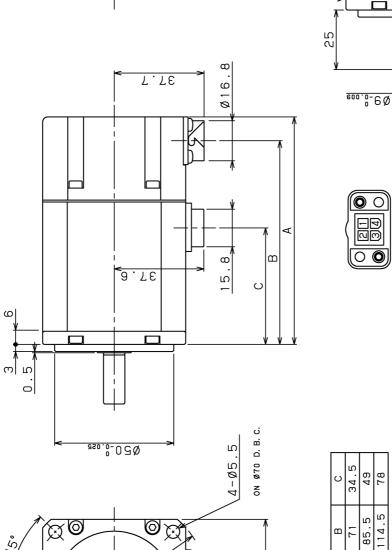


Fig.2.4(c) Models β M0.2 and β M0.3 : Shaft option



40 BM0.

ഗ

450

080

taq

Ó

			<u>۲</u>
$\bigcirc \bigcirc$	4	G	_ <u> </u>
	З	W	GEME
	S	<	ARRANGEMENT
$\overline{\bigcirc \bigcirc}$	-	\supset	PIN A POWE
			• ₽

ပ	34.5	49	78	
в	71	85.5	114.5	
A	81	95.5	124.5	
MODEL	βM0.4	βM0.5	1 M 8	

MAX. 0.04mm MAX. 0.02mm RABBET DIA. ECCENTRICITY SHAFT DIA. RUNOUT

MAX. 0.06mm 196N (20kgf)

MOUNTING FACE RUNOUT MAXIMUM RADIAL LOAD

NOTE)

090

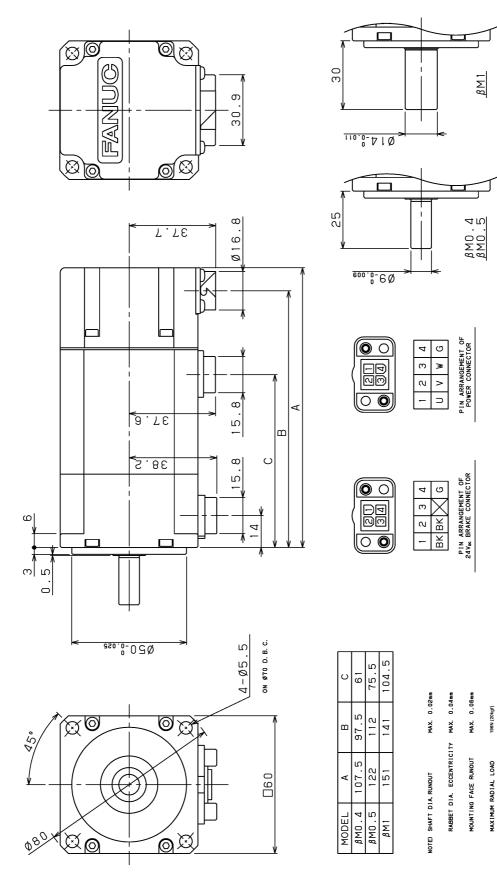
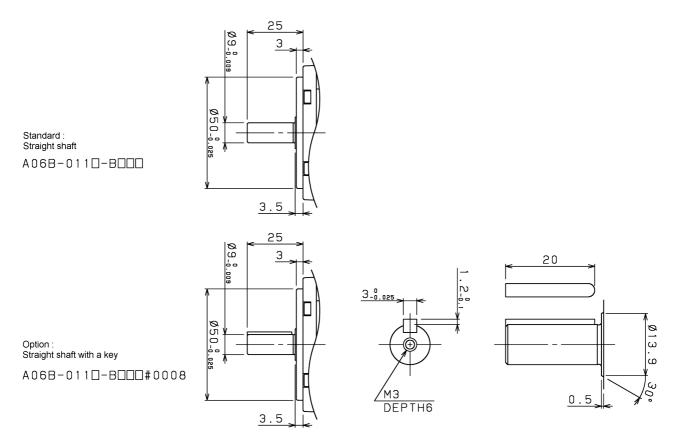



Fig.2.4(e) Models β M0.4, β M0.5, and β M1 : Outline drawing (with a brake)

$\underline{\textbf{2.SPECIFICATIONS AND CHARACTERISTICS}_{FANUC AC SERVO MOTOR \beta \text{ series } B-65232EN/03}$

Fig.2.4(f) Models β M0.4 and β M0.5: Shaft option

B-65232EN/03 FANUC AC SERVO MOTOR β series **2**. **SPECIFICATIONS** AND CHARACTERISTICS

Fig.2.4(g) Model βM1: Shaft option

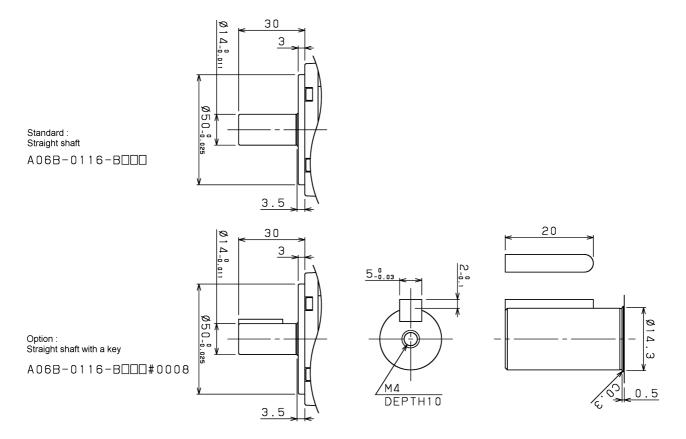
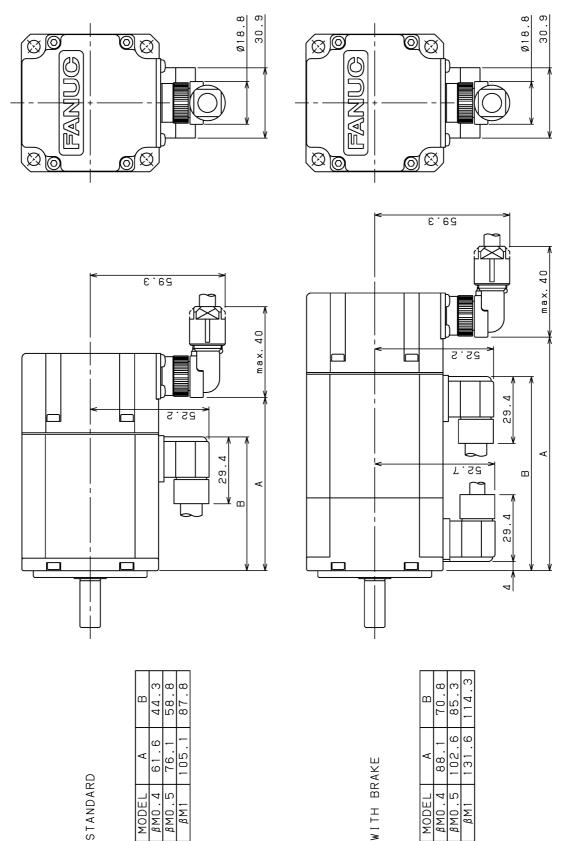



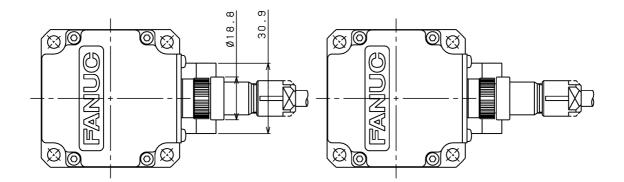
Fig.2.4(h) Models β M0.4, β M0.5, and β M1 : Connector mating diagram (elbow)

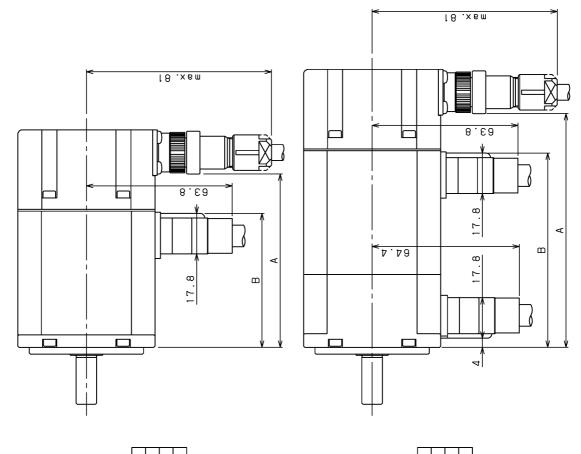
STANDARD

BM0.5 4

BM1

MODEL βM0.


- 90 -


βM0.4 βM0.5 βM1


MODEL

B-65232EN/03 FANUC AC SERVO MOTOR β series **2**. **SPECIFICATIONS** AND CHARACTERISTICS

STANDARD

WITH BRAKE

B	70°8	85.3	114.3	
A	88.1	102.6	131.6	
MODEL	βM0.4	βM0.5	βM1	

III. FANUC AC SERVO MOTOR $\boldsymbol{\beta}$ series

TYPES OF MOTORS AND DESIGNATION

The types and specifications of $\boldsymbol{\beta}$ series servo motors are described as follows.

Models

β1/3000, β2/3000, β3/3000, and β6/2000

A06B-00<u>xx</u>-B<u>yzz</u>

<u>XX</u>

- 31 : Model $\beta 1/3000$
- 32 : Model $\beta 2/3000$
- 33 : Model β 3/3000
- 34 : Model $\beta 6/2000$
- у
- 0 : Straight shaft
- 1 : Straight shaft with a 90VDC brake
- 5 : Taper shaft
- 6 : Taper shaft with a 90VDC brake
- ZZ
- 75 : With the pulse coder β A32B
- 77 : With the pulse coder β I32B

NOTE

- 1 The resolution of the β A32B and β I32B serial pulse coders is 32,768/rev.
- 2 The standard shafts used for β series motor are straight shafts. Use a straight shaft as far as circumstances, such as the delivery time and maintenance, permit.
- 3 To specify a straight shaft with a key, suffix the motor specification with #0008.
- 4 A woodruff key is attached to the tapered shaft as a standard.

2 SPECIFICATIONS AND CHARACTERISTICS

2.1 TYPE OF MOTORS AND SPECIFICATIONS

Item	Unit	β1/3000	β2/3000	β3/3000	β6/2000
Output	kW	0.3	0.5	0.5	0.9
Output	HP	0.4	0.67	0.67	1.2
Detect terring at stall	Nm	1	2	3	6
Rated torque at stall	kgfcm	10	20	30	60
Rated rotation speed	min⁻¹	3000	3000	3000	2000
Maximum rotation	min⁻¹	4000	4000	4000	3000
speed	min	(3000)	(3000)	(3000)	(2000)
Deter inertie	kgm ²	0.00033	0.00065	0.0019	0.0039
Rotor inertia	kgfcms ²	0.0034	0.0067	0.020	0.040
Weight	kg	2.5	3.5	5.0	8.5

(*) Maximum speed when HRV control is applied. When conventional control is applied, the maximum speed will be as indicated in the parentheses.

NOTE

The above values are under the condition at 20°C.

2.2 CHARACTERISTIC CURVE AND DATA SHEET

See Section 4.2 of Part I of this manual for details of each item.

(1) Speed - torque characteristics

Typical characteristics of speed and output torque are indicated. The data curve shown in this specification is for the rated input voltage (200V). Note, however, that the intermittent operating zone varies with the input voltage of the driving unit.

(2) Overload duty characteristic

The overload duty characteristic curves are determined based on the temperature restriction for the single motor unit (such as protection based on a thermal protector). The curves are determined by assuming that the temperature increases gradually under certain overload conditions. Therefore, the curves do not apply to the rapid temperature rise which occurs, for example, when an overcurrent flows in the motor windings until the thermal trip operates.

A thermal software function is provided to prevent an abrupt temperature rise in the motor by monitoring for abnormal current in the motor. This function may put a thermal limit to the operation of the motor when it is frequently accelerated and decelerated.

Driving units (such as amplifiers) contain their own overheating protection devices. Therefore, note that the operation of motor may be limited according to thermal limit of driver

The parameters given in the data sheet are representative values for an ambient temperature of 20°C. They are subject to an error of $\pm 10\%$.

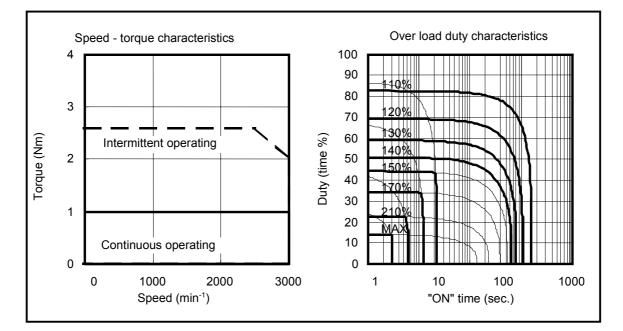
The indicated logical values are threshold values for the single motor unit (when the motor is not restricted by the control system).

The maximum torque that can be produced during acceleration or deceleration is temporarily calculated as the approximate product of the motor torque constant and the current limit value of the amplifier.

Example : $\beta 1/3000$

Motor torque constant = 0.31(Nm/Arms)

Amplifier limit value = 12Apeak


Maximum torque value = $\underline{12 \times 0.707} \times 0.31 = 2.6$ (Nm)

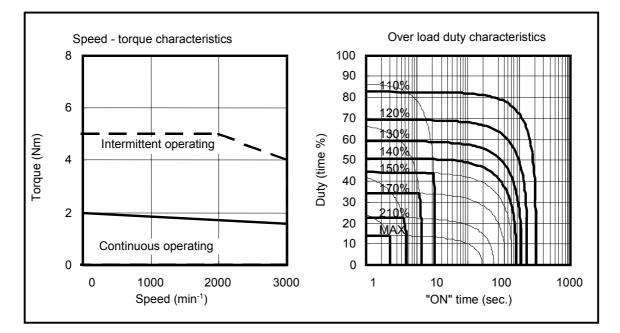
 \uparrow (Converted to an effective value)

However, this value is a theoretical value. So, the actual maximum torque depends on the motor, amplifier, servo software, and power supply used. Particularly when a maximum current flows through the motor, the actual maximum torque can be far less than a calculated value due to an influence such as magnetic saturation.

The data curve of speed-torque characteristics indicates typical data obtained by combining a motor with an amplifier actually. It is requested to make a study based on the data curve.

Model β1/3000

Specification : A06B-0031-Bxxx

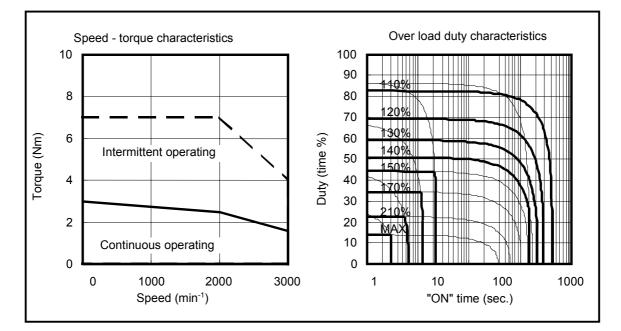

Data sheet

Parameter	Symbol	Value	Unit
Rating rotation speed	Nmax	3000	min ⁻¹
Rated torque at stall (*)	Ts	1 10	Nm kgfcm
Rotor inertia	Jm	0.00033 0.0034	kgm ² kgfcms ²
Continuous RMS current at stall (*)	ls	3.2	A(rms)
Torque constant (*)	Kt	0.31 3.2	Nm/A(rms) kgfcm/A(rms)
Back EMF constant (1-phase) (*)	Ke Kv	10.9 0.10	V(rms)/1000min ⁻¹ V(rms)sec/rad
Armature resistance (1-phase) (*)	Ra	0.96	Ω
Mechanical time constant	tm	0.0011	S
Thermal time constant	tt	15	min
Static friction	Tf	0.1 1	Nm kgfcm
Mass		2.5	kg

(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Model β2/3000


Specification : A06B-0032-Bxxx

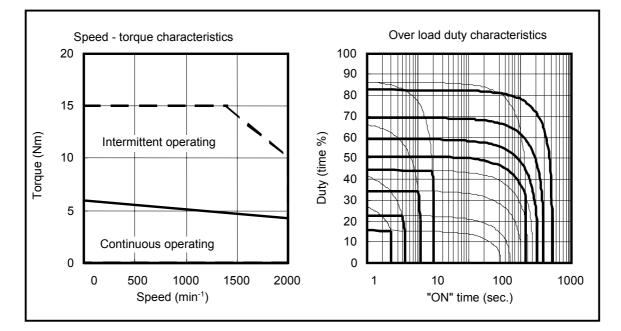
Data sheet

Parameter	Symbol	Value	Unit
Rating rotation speed	Nmax	3000	min ⁻¹
Rated torque at stall (*)	Ts	2 20	Nm kgfcm
Rotor inertia	Jm	0.00065 0.0067	kgm ² kgfcms ²
Continuous RMS current at stall (*)	ls	3.2	A(rms)
Torque constant (*)	Kt	0.61 6.2	Nm/A(rms) kgfcm/A(rms)
Back EMF constant (1-phase) (*)	Ke Kv	21.4 0.20	V(rms)/1000min ⁻¹ V(rms)sec/rad
Armature resistance (1-phase) (*)	Ra	1.45	Ω
Mechanical time constant	tm	0.008	S
Thermal time constant	tt	20	min
Static friction	Tf	0.1 1	Nm kgfcm
Mass		3.5	kg

(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

Model β3/3000

Specification : A06B-0033-Bxxx

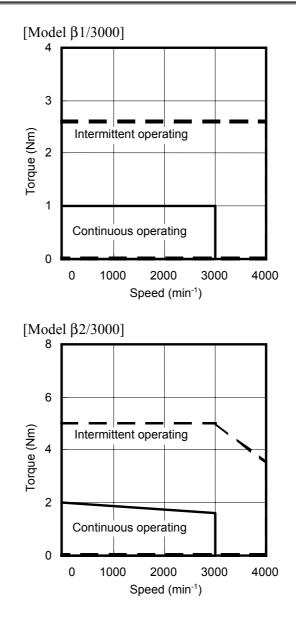

Data sheet

Parameter	Symbol	Value	Unit
Rating rotation speed	Nmax	3000	min ⁻¹
Rated torque at stall (*)	Ts	3 30	Nm kgfcm
Rotor inertia	Jm	0.0019 0.020	kgm ² kgfcms ²
Continuous RMS current at stall (*)	ls	5.3	A(rms)
Torque constant (*)	Kt	0.56 5.7	Nm/A(rms) kgfcm/A(rms)
Back EMF constant (1-phase) (*)	Ke Kv	19.4 0.18	V(rms)/1000min ⁻¹ V(rms)sec/rad
Armature resistance (1-phase) (*)	Ra	0.57	Ω
Mechanical time constant	tm	0.009	s
Thermal time constant	tt	40	min
Static friction	Tf	0.3 3	Nm kgfcm
Mass		5.0	kg

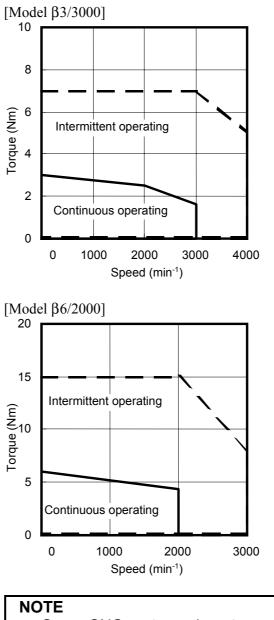
(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Model β6/2000

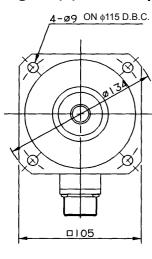

Specification : A06B-0034-Bxxx

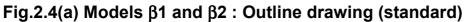
Data sheet

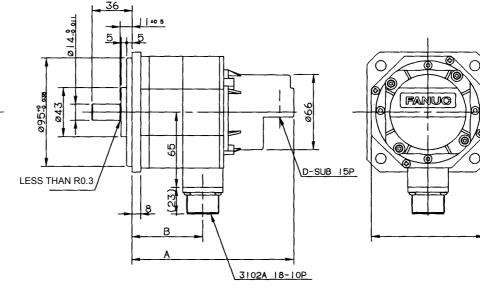

Parameter	Symbol	Value	Unit	
Rating rotation speed	Nmax	2000	min ⁻¹	
Rated torque at stall (*)	Ts	6 60	Nm kgfcm	
Rotor inertia	Jm	0.0039 0.040	kgm ² kgfcms ²	
Continuous RMS current at stall (*)	ls	5.6	A(rms)	
Torque constant (*)	Kt	1.05 10.7	Nm/A(rms) kgfcm/A(rms)	
Back EMF constant (1-phase) (*)	Ke Kv	37.0 0.35	V(rms)/1000min ⁻¹ V(rms)sec/rad	
Armature resistance (1-phase) (*)	Ra	0.87	Ω	
Mechanical time constant	tm	0.009	s	
Thermal time constant	tt	40	min	
Static friction	Tf	0.3 3	Nm kgfcm	
Mass		8.5	kg	

(*)The values are the standard values at 20°C and the tolerance is $\pm 10\%$.

2.3 SPEED-TORQUE CHARACTERISTICS FOR HRV CONTROL

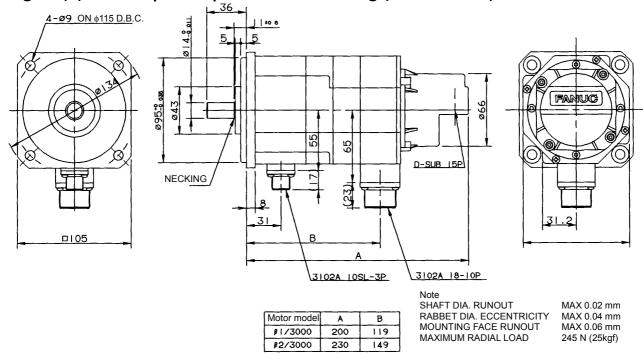



Some CNC systems do not support HRV control. Applying HRV control causes the intermittent operating area to be expanded, at high speed. The continuous operating area is the same as that conventional control.

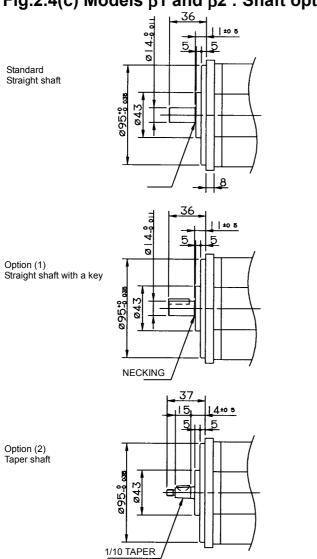

B-65232EN/03 FANUC AC SERVO MOTOR β series 2. SPECIFICATIONS AND CHARACTERISTICS

2.4 OUTLINE DRAWINGS

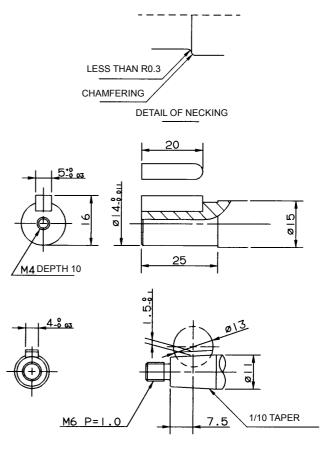
Model	Fig. No.
Models β 1 and β 2 : Outline drawing (standard)	Fig.2.4(a)
Models β 1 and β 2 : Outline drawing (with a brake)	Fig.2.4(b)
Models β 1 and β 2 : Shaft option	Fig.2.4(c)
Models β 3 and β 6 : Outline drawing (standard)	Fig.2.4(d)
Models β 3 and β 6 : Outline drawing (with a brake)	Fig.2.4(e)
Models β 3 and β 6 : Shaft option	Fig.2.4(f)



			Note SHAF
Motor model	A	В	RABE MOU
B1/3000	144	63	MAXI
\$2/3000	174	93	110.000


HAFT DIA. RUNOUT	
ABBET DIA. ECCENTRICITY	
OUNTING FACE RUNOUT	
AXIMUM RADIAL LOAD	

MAX 0.02 mm MAX 0.04 mm MAX 0.06 mm 245N (25kgf)



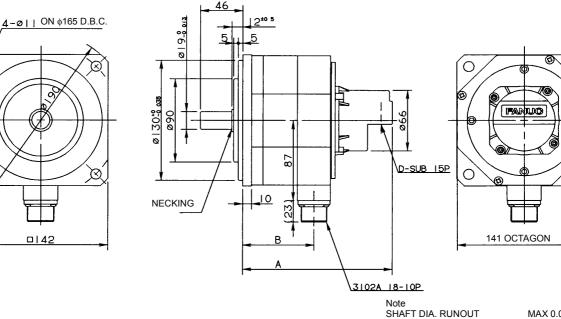

B-65232EN/03 FANUC AC SERVO MOTOR β series 2. SPECIFICATIONS AND CHARACTERISTICS

Fig.2.4(c) Models β 1 and β 2 : Shaft option

2.SPECIFICATIONS AND CHARACTERISTICS FANUC AC SERVO MOTOR β series B-65232EN/03

Fig.2.4(d) Models β 3 and β 6 : Outline drawing (standard)

ଝ

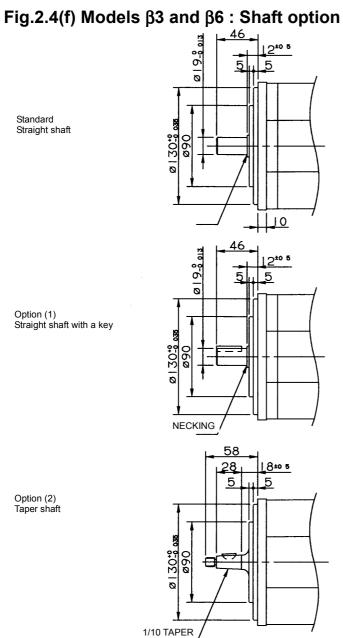
Ø

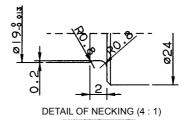
			SHAF
Motor model	Α	В	RAB
\$3/3000	165	79	MOU MAX
₿6/2000	203	117	

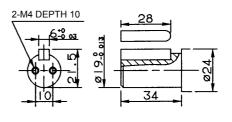
MAX 0.02 mm BET DIA. ECCENTRICITY JNTING FACE RUNOUT

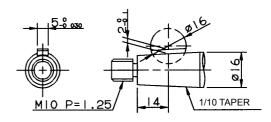
MAX 0.04 mm MAX 0.06 mm 686 N (70kgf)

Ο


G


Ó


Fig.2.4(e) Models β 3 and β 6 : Outline drawing (with a brake)



B-65232EN/03 FANUC AC SERVO MOTOR β series 2. SPECIFICATIONS AND CHARACTERISTICS

IV. FANUC AC SERVO AMPLIFIER $\boldsymbol{\beta}$ series

OVERVIEW

The main features of servo amplifier β series are as follows:

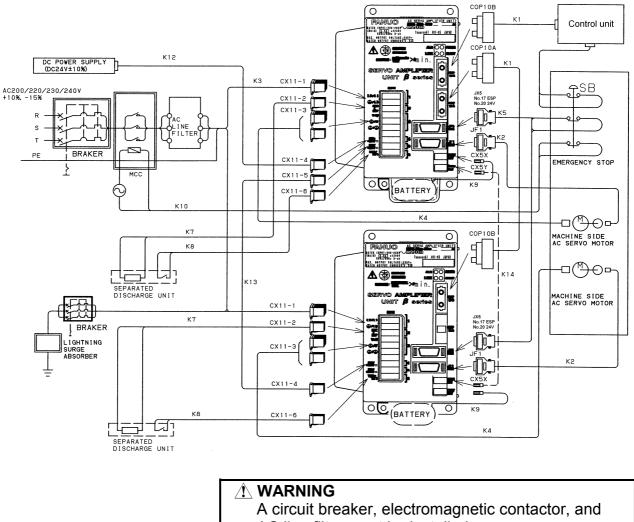
Features not dependent on the interface

- (1) The servo amplifier β series is integrated with a power supply unit, so that a compact system can be implemented for one or two axes.
- (2) The servo amplifier β series offers low-cost one-axis AC servo amplifiers.
- (3) The servo amplifier β series offers models that support not only the FANUC standard interface, namely, the FSSB interface, but also the I/O Link interface available with the CNC, Power Mate, and PLC, and the conventional interface, namely, the PWM interface (type B).
- (4) The dimensions of each amplifier are the same even if a different interface is employed.
- (5) The servo amplifier β series offers a compact unit with its amounting space and cubic volume reduced by about 50% when compared with α SVU.
- (6) The amplifier unit has been designed to conform to the European VDE0160 safety standard, American UL standards, and Canadian CSA standards.

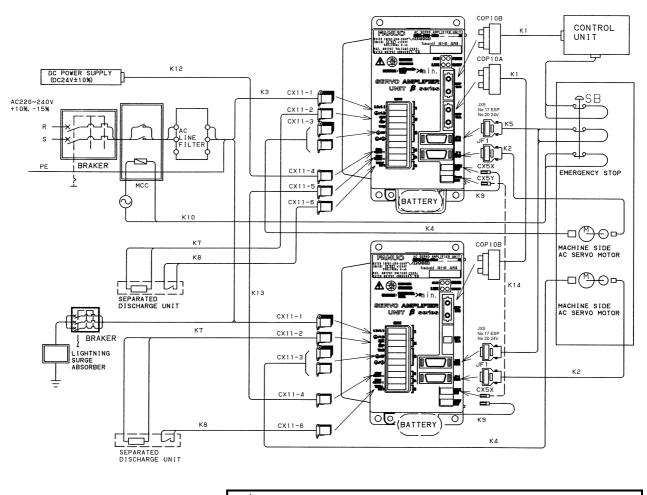
The servo amplifier β series with the FSSB interface has the following features:

(1) The servo amplifier β series with the FSSB interface offers oneaxis AC servo amplifiers that are designed for feed axes and are used to drive the servo motor β series suitable for positioning and the servo motor αi series suitable for use with feed axes.

The servo amplifier β series with the I/O Link interface has the following features in addition to "Features not dependent on the interface":

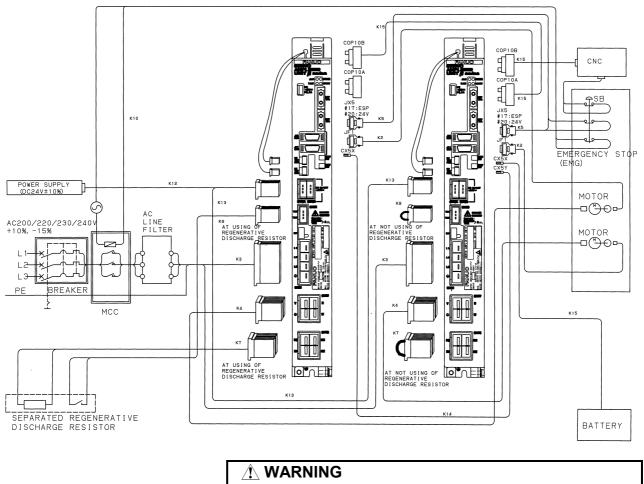

- (1) Offer one-axis AC servo amplifiers suitable for use with positioning axes, and used to drive the servo motor β series and servo motor αi series.
- (2) Have a position control function as well as a set to facilitate control over peripheral devices such as turrets and ATCs.
- (3) Can be connected to the Series 16/18/21/15*i*/16*i*/18*i*/20*i*/21*i*, Power Mate, Power Mate *i* PMC, and PLC via the I/O Link, thereby facilitating positioning axis expansion.
- (4) Enable the master CNC to set and display parameters, the current position, and diagnosis data.
- (5) Support move commands that make movement synchronize with a train of external pulses, thereby enabling diverse use.

2 **CONFIGURATION**


Following contents shows an example system configuration having two controlled axes. A separated regenerative discharge unit nay be required to handle large amounts of regenerative energy if the load is particularly heavy.

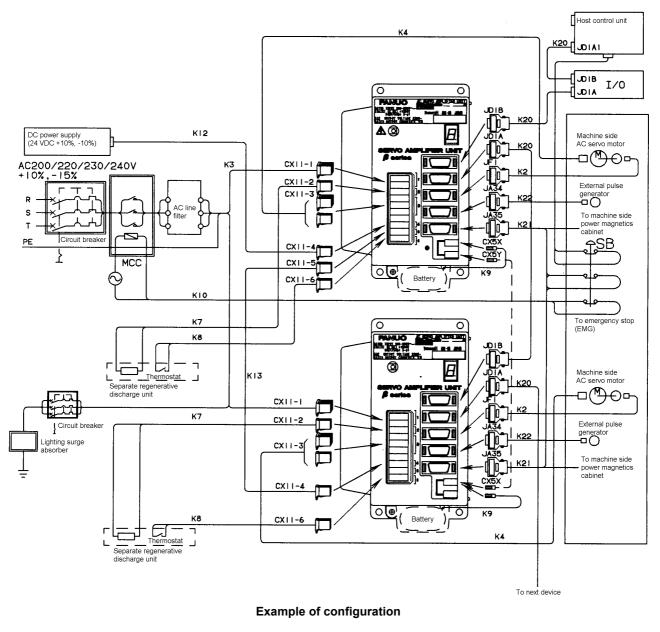
2.1 FSSB INTERFACE

2.1.1 SVU-4, SVU-12, SVU-20 (Three-phase Power Input)

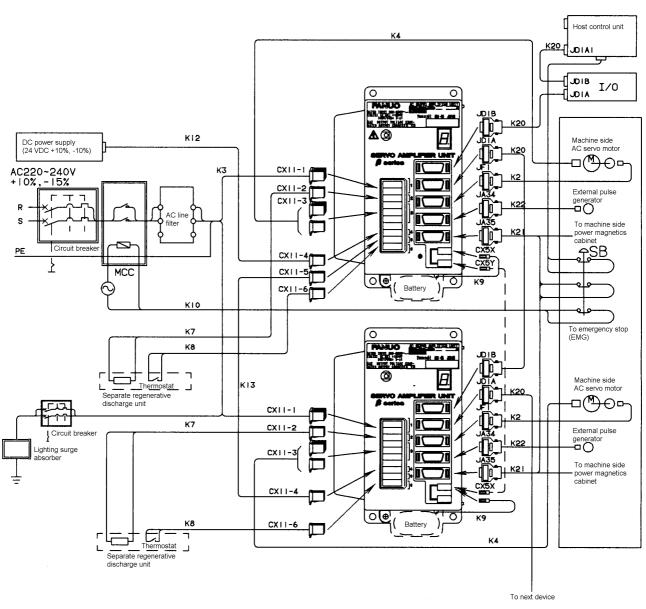

AC line filter must be installed.

2.1.2 SVU-4, SVU-12, SVU-20 (Single-phase Power Input)

2.1.3 SVU-40, SVU-80 (Three-phase Power Input)

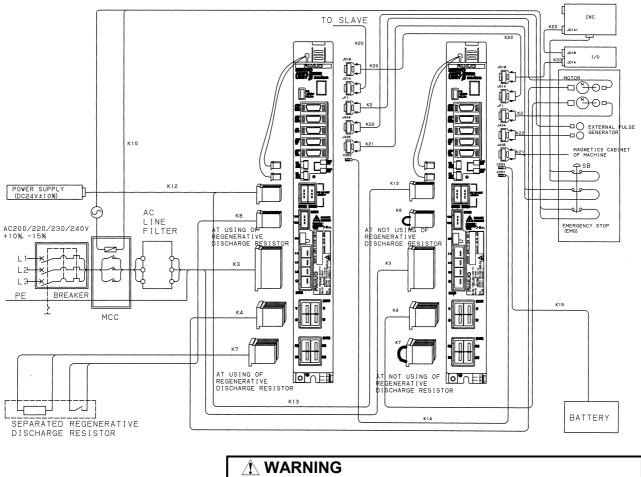

CNC COPI n. JX5 #17:ESP #20:24V **T**SB JX5 #17:ESP K10 EMERGENCY STOP H ₽ ₽ Æ n-POWER SUPPLY (DC24V±10%) ::: Π MOTOR к13 6 AC LINE FILTER d K8 AT USING OF REGENERATIV DISCHARGE F AC200/220/230/240 +10%, -15% AT NOT USING REGENERATIVE DISCHARGE RE MOTOR ĪVE SISTO -0 L1 7 L2 ΡE BREAKEF мсс K15 к7 AT USING OF REGENERATIVE DISCHARGE RESISTOR AT NOT USING OF REGENERATIVE DISCHARGE RESISTOR K13 니 L K14 SEPARATED REGENERATIVE DISCHARGE RESISTOR BATTERY A circuit breaker, electromagnetic contactor, and

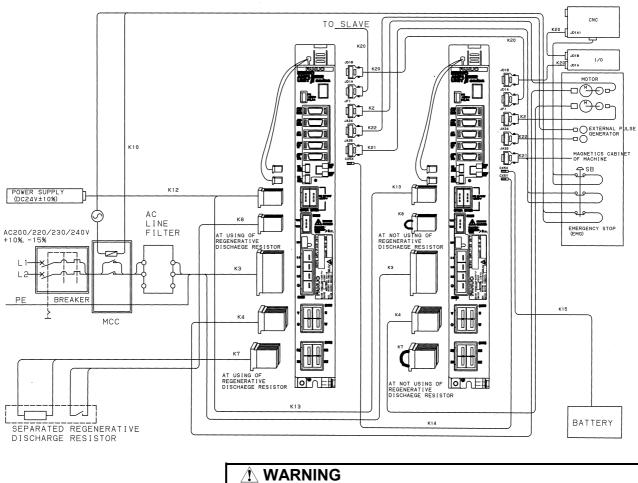
AC line filter must be installed.


2.1.4 SVU-40, SVU-80 (Single-phase Power Input)

2.2 I/O Link INTERFACE

2.2.1 SVU-4, SVU-12, SVU-20 (Three-phase Power Input)

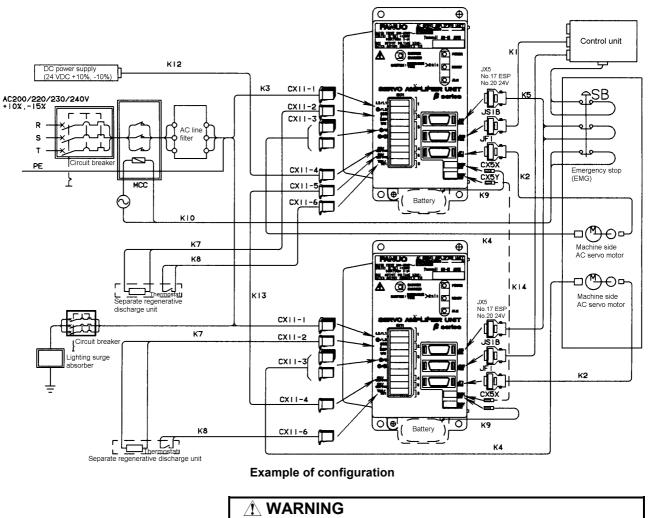


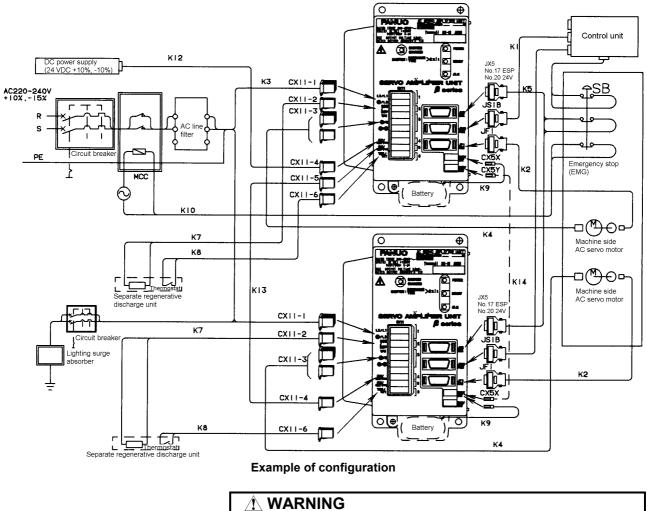


2.2.2 SVU-4, SVU-12, SVU-20 (Single-phase Power Input)

Example of configuration

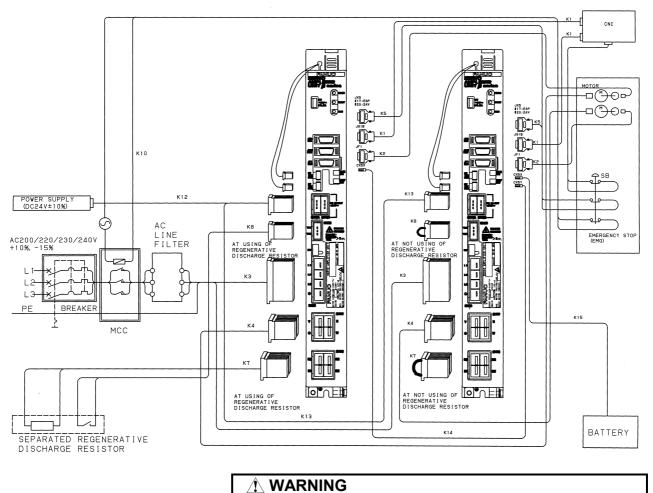
2.2.3 SVU-40, SVU-80 (Three-phase Power Input)





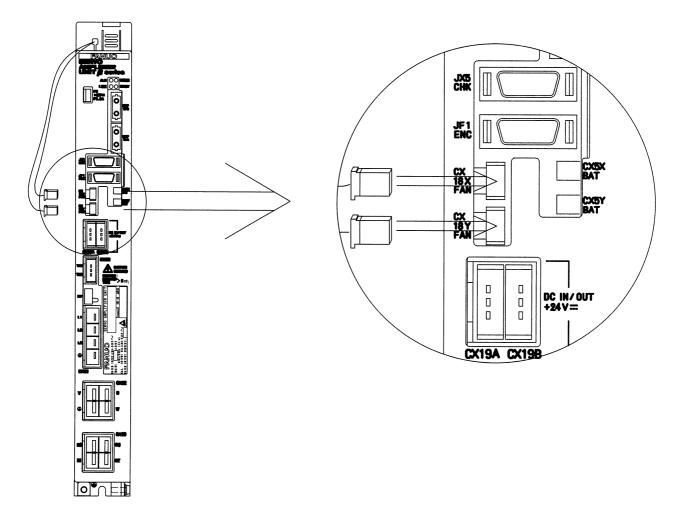
2.2.4 SVU-40, SVU-80 (Single-phase Power Input)

2.3 **PWM INTERFACE**


2.3.1 SVU-4, SVU-12, SVU-20 (Three-phase Power Input)

2.3.2 SVU-4, SVU-12, SVU-20 (Single-phase Power Input)

2.3.3 SVU-40, SVU-80 (Three-phase Power Input)


CNC JX5 #17:ESP #20:24V ╼ᠿᢆᠣᢇ JX5 #17:ESP #20:24V <u>к</u>2 K10 701 Ē к12 POWER SUPPLY (DC24V±10%) : Π AC LINE FILTER 0 ка 1: AT NOT USING OF REGENERATIVE DISCHARGE RESISTOR EMERGENCY STOP (EMG) AC200/220/230/240V +10%, -15% AT USING OF REGENERATIVE DISCHARGE RES RES L 1-Ŷ кэ 1 кэ L2 1 ΡE BREAKER K15 К4 мсс ΠΠ AT USING OF REGENERATIVE DISCHARGE RESISTOR AT NOT USING OF REGENERATIVE DISCHARGE RESISTOR К13 L / К14 BATTERY SEPARATED REGENERATIVE DISCHARGE RESISTOR

2.3.4 SVU-40, SVU-80 (Single-phase Power Input)

2.4 METHOD OF CONNECTING THE FAN MOTOR

Connect cables of two fan motors to the connector (CX18X, CX18Y) of servo amplifier unit. There is no distinction in CX18X and CX18Y. When the cable is attached or detached to the connector, keep cables loose and not stress to the connector.

Be careful because poor contact may be caused when the fan motor is connected under the condition that the cable spreads.

2.5 UNIT TYPES AND SPECIFICATIONS

Model	Specification	Interface	Application
SVU-4	A06B-6093-H119	FSSB	For a feed axis that requires high precision
	A06B-6093-H159	I/O Link	For positioning that does not require high precision
SVU-12	A06B-6093-H111	FSSB	For a feed axis that requires high precision
	A06B-6093-H151	I/O Link	For positioning that does not require high precision
	A06B-6093-H101	PWM	For a feed axis that requires high precision
SVU-20	A06B-6093-H112	FSSB	For a feed axis that requires high precision
	A06B-6093-H152	I/O Link	For positioning that does not require high precision
	A06B-6093-H102	PWM	For a feed axis that requires high precision
SVU-40	A06B-6093-H113	FSSB	For a feed axis that requires high precision
	A06B-6093-H153	I/O Link	For positioning that does not require high precision
	A06B-6093-H103	PWM	For a feed axis that requires high precision
SVU-80	A06B-6093-H114	FSSB	For a feed axis that requires high precision
	A06B-6093-H154	I/O Link	For positioning that does not require high precision
	A06B-6093-H104	PWM	For a feed axis that requires high precision

Table 2.5(a) Unit types and specifications (1)

				016 2.5(1	-/									
	Motor model	1	2	3	2	4		8		1	2		22	
		α1	α2			α4		α8			α12		α22	
	αi	/5000 <i>i</i>	/5000 <i>i</i>			/4000 <i>i</i>		/3000 <i>i</i>			/3000 <i>i</i>		/3000 <i>i</i>	
Amplifier		(20A)	(20A)			(40A)		(40A)			(80A)		(80A)	
Amplifier model			αM2	αM3					αM8		αM12			
model	αMi		/5000i	/5000 <i>i</i>					/4000 <i>i</i>		/4000 <i>i</i>			
			(20A)	(20A)					(80A)		(80A)			
					αC4		aC8			αC12		αC22		αC30
	αCi				/3000 <i>i</i>		/2000 <i>i</i>			/2000 <i>i</i>		/2000 <i>i</i>		/1500 <i>i</i>
					(20A)		(20A)			(20A)		(40A)		(80A)
	H112													
SVU-20	H152	0	0	0	0		0			0				
	H102													
	H113													
SVU-40	H153					0		0				0		
	H103													
	H114													
SVU-80	H154								0		0		0	0
	H104													

Table 2.5(b) Applicable motor (αi series servo motor)

B-65232EN/03

FANUC AC SERVO AMPLIFIER β series**2**.CONFIGURATION

	Motor model	0.2	0.3	0.4	0.5		1	2	3	6
Amplifier model	βM	βM0.2 /4000 (4A)	βM0.3 /4000 (4A)	βM0.4 /4000 (20A)	βM0.5 /4000 (20A)	βM1 /4000 (20A)				
	β						β1 /3000	β2 /3000	β3 /3000	β6 /2000
SVU-4	H119 H159	0	0							
SVU-12	H111 H151 H101						0	0		
SVU-20	H112 H152 H102			0	0	0			0	ο

Table 2.5(c) Applicable motor (βM, β series servo motor)

Classification	Name	Appli	Specification			
		Type A: For applications whe powers does no	A81L-0001-0083#3C			
Basic	AC line filter (Note 1)	Type B: For applications whe powers does not	A81L-0001-0101#C			
		•••	Type C: For applications where the sum of the rated motor powers does not exceed 23 kW			
	Power	Type SAE : Ca	Type SAE : Capacity 2.2kVA			
	transformer for	Type SBE : Ca	A80L-0024-0006			
	export	Type SCE : Ca	A80L-0026-0003			
	(Note 2)	Type SDE : Ca	A80L-0028-0001			
	Separated regenerative discharge unit (Caution)	30Ω/20W at natural cooling	For SVU-4, SVU-12, SVU-20	A06B-6093-H401		
Ontion		30Ω/100W at natural cooling	For SVU-4, SVU-12, SVU-20	A06B-6093-H402 (Note 3)		
Option		16Ω/200W at natural cooling	For SVU-40, SVU-80	A06B-6089-H500		
		16Ω/800W with cooling fan motor		A06B-6089-H713		
		$16\Omega/1200W$ with cooling fan motor	16Ω/1200W For SVU-40, SVU-80			
	Fan adapter	With forced air cooling (Note 4)	For SVU-40, SVU-80	A06B-6078-K002		

Table 2.5(d) Unit types and specifications (2)

A separated regenerative discharge unit must be used when the amount of regenerative energy produced by the motor exceeds a specified value because of a high load inertia of frequent acceleration/deceleration.

Refer to Chapter 4 "Separated regenerative discharge unit" for details of regenerative discharge unit. For information about connections, see Part V, "CONNECTION". An incorrect connection can damage the amplifier. Care must be taken.

NOTE

1 An AC line filter must be used to suppress the influences of high-frequency noise on the power supply.

When a power transformer (insulation type) is used because a power supply voltage within the specified range is not available, this AC line filter is not necessary. If the use of this AC line filter fails to fully satisfy EMC requirements the use of a commercially available noise filter is recommended.

- 2 At single-phase power input, it is not necessary. If the line voltage is higher than 200/220/230 VAC, use a power transformer. When a transformer is used, as AC line filter usually becomes unnecessary, however in case that requirements of EMC standard are still not satisfied, AC line filter will be needed.
- 3 A06B-6093-H402 contains a connector kit for connection with a β series amplifier as a standard accessory.

FANUC AC SERVO AMPLIFIER β series**2**.CONFIGURATION

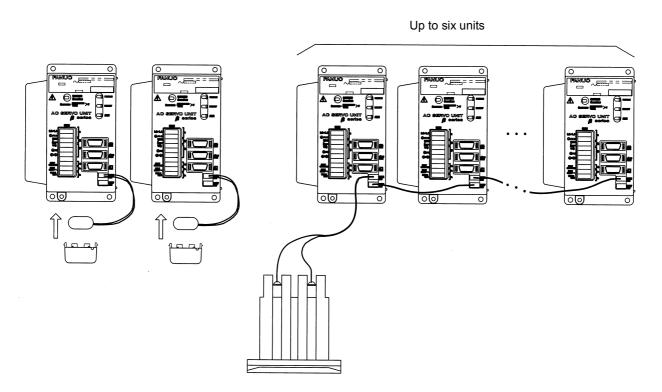
Table 2.	5(e) Unit types	and specifications	(for SVU-4	SVU-12, SVU-20)

Classification	Name	Name Application		Specification
	Connector		Solder type	A06B-6073-K212
	(PWM)	JX5 : For ESP signal	Crimp type	A06B-6073-K213
	Connector		Solder type	A06B-6073-K212
	(PWM)	JS1B : NC-SVU command cable	Crimp type	A06B-6073-K213
	Connector		Solder type	A06B-6073-K212
	(I/O Link)	JD1A : For I/O Link	Crimp type	A06B-6073-K213
	Connector		Solder type	A06B-6073-K212
	(I/O Link)	JD1B : For I/O Link	Crimp type	A06B-6073-K213
	Connector	1425 : For built in DLinput coble	Solder type	A06B-6073-K212
	(I/O Link)	JA35 : For built-in DI input cable	Crimp type	A06B-6073-K213
Basic	Connector (common)	JF1 : For pulse coder F/E	3 cables	A06B-6073-K214
	Connector (common)	JA34 : For external pulse in	A06B-6073-K214	
	Connector	CX11-1, 3, 4, 5 and dummy plug	(Caution)	
	(common)	regenerative discharge unit	A06B-6093-K305	
	Connector	CX11-1, 3, 4, 5: When a regener	rative discharge	(Caution)
	(common)	unit is used	A06B-6093-K306	
	Connector (common) (Note 1)	CX11-4, 5: When the cross-section exceeds 0.5 mm ²		A06B-6093-K304
	Fuse (common)	For protecting control power 2- short-circuit	A06B-6073-K250	
	Connector	CX5X, Y: For battery	cable	A06B-6093-K303
	Battery case	For absolute pulse coders. Conn (Note 2)	A06B-6093-K002	
	Battery	For absolute pulse coders. Conn (Note 2)	ection method 1	A06B-6093-K001
Ontina	Battery case	For absolute pulse coders. Conn (Note 2)	ection method 2	A06B-6050-K060
Option	Battery	For absolute pulse coders. Conn (Note 2)	ection method 2	A06B-6050-K061
	Battery case	For absolute pulse coders (Cab Connection method 2 (I		A06B-6093-K810
	Lightning	Not complying with the standa	rd (Warning)	A06B-6077-K141
	surge absorber	Complying with the standard	l (Warning)	A06B-6077-K142

The terms "PWM," " I/O Link," and "common" used in the Name column indicate what interface to be used. PWM : The PWM interface is used. I/O Link : The I/O Link interface is used. Common : Both PWM and I/O Link interfaces can be used.

2.CONFIGURATION FANUC AC SERVO AMPLIFIER β series

At the power input of the power magnetics cabinet, install a surge absorber between the power lines and between each power line and a ground to protect the unit from a voltage surge caused by lightning.


See Section 7.5 for details of the lightning surge absorber.

Refer to Chapter 4 "Separated regenerative discharge unit" for details of regenerative discharge unit. For information about connections, see Part V, "CONNECTION". <u>An incorrect connection can damage the amplifier. Care must be taken.</u>

NOTE

- 1 When multiple β series amplifiers are connected, and a wire with a diameter of 0.53 mm² or more needs to be used, select this connector. The supply current of the control power supply per β series amplifier is 0.6 A for the FSSB interface, 0.9 A for the I/O Link interface, or 0.4 A for the PWM interface. So, select an appropriate wire according to the number of β series amplifiers to be connected.
- 2 There are two methods of connecting the batteries for the absolute pulse coder. Specify an appropriate battery case and battery according to the connection method selected.

Classification	Name	Application	Specification	
	Connector	CX21: For input power line	Crimp type	A06B-6093-K311
	(common)		Chillip type	A00B-0093-N311
	Connector	CX22: For motor power line	Crimp type	A06B-6093-K312
	(common)	(cross-sectional area of wire is under 3.5 mm ²)	oninp type	7000 0000 1012
	Connector	CX22: For motor power line	Crimp type	A06B-6093-K313
	(common)	(cross-sectional area of wire is under 3.5 mm ²)	- 1.91-	
	Connector	CX20, CX23:For regenerative discharge resistor (When separate regenerative discharge resistor is	Crimp type	A06B-6093-K314
	(common)	not used.)		(Note 1)
	Connector	CX20, CX23: For regenerative discharge resistor (When separate regenerative discharge resistor is	Crimp type	A06B-6093-K315
	(common)	used.)	Chillip type	(Note 1)
	Connector	CX19A/B: For 24 VDC input/output connector	Crimp type	A06B-6093-K316
	(common)		1 51	
	Connector	CX19A/B: For 24 VDC input/output connector	Crimp type	A06B-6093-K317
Basic	(common) Connector			(Note 2)
	(common)	JF1 : For pulse coder F/B cables	Solder type	A06B-6073-K214
	Fuse			1000 0070 K050
	(common)	For protecting control power 24 VDC from a sh	ort-circuit	A06B-6073-K250
	Connector	JX5 : For ESP signal	Solder type	A06B-6073-K212
	(PWM, FSSB)	JAS. FOI ESP signal	Crimp type	A06B-6073-K213
	Connector	JS1B : NC-SVU command cable	Solder type	A06B-6073-K212
	(PWM)	JSTB . NC-SVO command cable	Crimp type	A06B-6073-K213
	Connector	ID1A : For I/O Link	Solder type	A06B-6073-K212
	(I/O Link)	JD1A : For I/O Link	Crimp type	A06B-6073-K213
	Connector		Solder type	A06B-6073-K212
	(I/O Link)	JD1B : For I/O Link	Crimp type	A06B-6073-K213
	Connector		Solder type	A06B-6073-K212
	(I/O Link)	JA35 : For built-in DI input cable	Crimp type	A06B-6073-K213
	Connector	JA34 : For external pulse input cable		A06B-6073-K214
	(I/O Link)			A00B-007 5-K2 14
	Connector	CX5X, Y : For battery		A06B-6093-K303
	(common)	,,		
	Battery case (common)	For absolute pulse coders. Connection method	1 (Note 3)	A06B-6093-K002
	Battery			
	(common)	For absolute pulse coders. Connection method	1 (Note 3)	A06B-6093-K001
Option	Battery case			
option	(common)	For absolute pulse coders. Connection method	2 (Note 3)	A06B-6050-K060
	Battery	For abachita pulse and an Oracratica with the	0 (Note 0)	
	(common)	For absolute pulse coders. Connection method	\geq (Note 3)	A06B-6050-K061
	Lightning	Not complying with the standard (Note	4)	A06B-6077-K141
	surge absorber			
	(common)	Complying with the standard (Note 4)		A06B-6077-K142

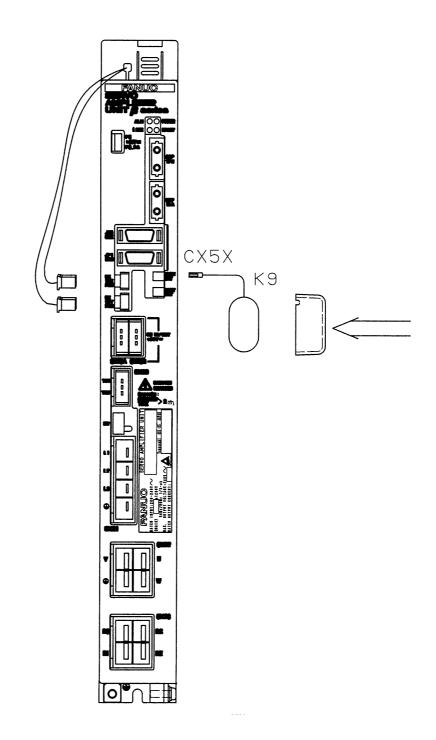
The terms "PWM," " I/O Link," and "common" used in the Name column indicate what interface to be used.

PWM : The PWM interface is used.

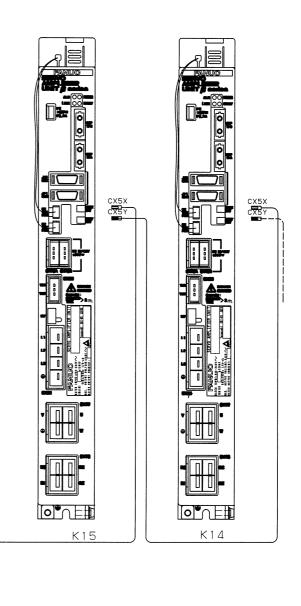
I/O Link : The I/O Link interface is used.

Common : The FSSB interface, I/O Link interface, and PWM interface can be used.

At the power input of the power magnetics cabinet, install a surge absorber between the power lines and between each power line and a ground to protect the unit from a voltage surge caused by lightning.

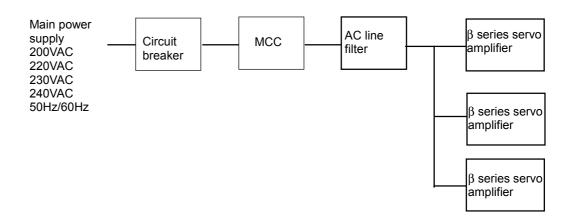

See Section 7.5 for details of the lightning surge absorber.

NOTE


- 1 When no separate regenerative resistor is used, a dummy connector for connecting the overheat alarm (OH alarm) for separate regenerative resistors and a dummy connector for connecting a resistance wire are required. Specify the ordering drawing number A06B-6093-K314 when ordering dummy connectors for connecting the OH alarm and resistance wire. Specify the ordering drawing number A06B-6093-K315 when ordering a housing and contact for connecting a separate regenerative resistor with a β series amplifier.
- 2 When multiple β series amplifiers are connected, and a wire with a diameter of 0.5 mm² or more needs to be used, select this connector. The supply current of the control power supply per β series amplifier is 0.6 A for the FSSB interface, 0.9 A for the I/O Link interface, or 0.4 A for the PWM interface. So, select an appropriate wire according to the number of β series amplifiers to be connected.
- 3 There are two methods of connecting the batteries for the absolute pulse coder. Specify an appropriate connection method according to the use environment.
- 4 See Section 3.2, "DERATING", to choose whether to cool the β series amplifier by natural air cooling or by forced air cooling.
 For forced air cooling, a fan motor with a wind speed of 2 m/sec is required.
 A desired cooling capability can be obtained by using a fan adapter.
 For the attachment of a fan adapter, see Section 9.2, "PANEL CUT-OUT DRAWING" for forced air cooling.
 When using forced air cooling, design a power magnetics cabinet so that cooling air

from the fan motor does not leak. The fan motor may need to be maintained and replaced, depending on the use environment. So, give a consideration to the installation and structure of a fan motor so that maintenance and replacement work can be performed easily.

Connection method 1



Connection method 2

F

2.6 CIRCUIT BREAKER, ELECTROMAGNETIC CONTACTOR, AND AC LINE FILTER

2.6.1 Circuit Breaker Rating

Select an appropriate circuit breaker based on Table 2.6.1. When connecting multiple amplifiers to one circuit breaker, select a circuit breaker according to the sum of the input currents of the individual motors at continuous rated output based on Table 2.6.1.

Note that, during rapid motor acceleration, a current that is roughly triple the continuous rating flows. Therefore, select a circuit breaker that does not trip when a current that is triple the continuous rating flows for 3 seconds.

When certification of the European standard (VDE0160) is to be obtained, the capacity of a circuit breaker needs to be limited for protection of cables such as power input cables.

When connecting multiple amplifiers to one circuit breaker, select a circuit breaker so that the value obtained by multiplying the sum of the input currents of the individual motors at continuous rated output based on Table 2.6.1 by 0.6 does not exceed the rated current of the circuit breaker.

For servo amplifier protection, use a correct circuit
breaker.
SVU-4, SVU-20: Circuit breaker of 10 A or less
SVU-40, SVU-80: Circuit breaker of 20 A or less

Example selection:

EA33 Series manufactured by Fuji Electric Co., Ltd.

output						
	Input current	Input current				
Motor model	(three-phase input)	(single-phase input)				
	(Arms)	(Arms)				
βM0.2/4000	0.2	0.4				
βM0.3/4000	0.4	0.9				
βM0.4/4000	0.6	1.1				
βM0.5/4000	0.9	1.7				
βM1/4000	1.8	3.5				
β1/3000	1.3	2.6				
β2/3000	2.2	4.3				
β3/3000	2.2	4.3				
β6/2000	4.0	7.8				
α1/5000 <i>i</i>	2.2	4.3				
α2/5000 <i>i</i>	3.3	6.5				
α 4/4000 <i>i</i>	6.2	12.1				
α8/3000 <i>i</i>	7.1	13.8				
α 12/3000 <i>i</i>	13.4	19.0 (*1)				
α22/3000 <i>i</i>	17.8	19.0 (*1)				
αM2/5000 <i>i</i>	3.3	10.4				
αM3/5000 <i>i</i>	4.5	8.6				
α M8/4000 <i>i</i>	11.1	19.0 (*1)				
αM12/4000 <i>i</i>	12.0	19.0 (*1)				
αC4/3000 <i>i</i>	4.5	8.6				
α C 8/2000 <i>i</i>	5.3	8.6 (*1)				
αC12/2000 <i>i</i>	8.0	8.6 (*1)				
αC22/2000 <i>i</i>	13.4	19.0 (*1)				
αC30/1500 <i>i</i>	18.7	19.0 (*1)				
(*1) D 1 (1	auturet limit annligable	when single phase input				

Table 2.6.1 Currents drawn by motors operating at continuous rated output

(*1) Depends on the output limit applicable when single-phase input is used.

Example)
Connecting two β 6/2000 units operating on three-
phase power
Because one $\beta 6/2000$ unit requires an input
current of 4.0 Arms:
(4.0+4.0) × 0.6 ≒ 4.8 Arms
So, a 10A circuit breaker can be used.
Because one β 6/2000 unit requires an input current of 4.0 Arms: (4.0+4.0) × 0.6 = 4.8 Arms

2.6.2 **Electromagnetic Contactor Rating**

Select an appropriate electromagnetic contactor based on Table 2.6.2. When multiple amplifiers are to be connected to a single electromagnetic contactor (MCC), select an MCC based on the currents on Table 2.4.1.

Table 2.6.2 Recommendation example of electromagnetic contactor

Manufactured by Fuji Electric Co., Ltd.	Rated current
SC-03	11Apeak
SC-4-1	18Apeak
SC-1N	26Apeak

2.6.3 **AC Line Filter**

When multiple amplifiers are connected to a single AC line filter, select a line filter based on the sum of the currents on Table 2.6.3. An AC line filter or an EMC noise filter must be used to suppress the influence of high-frequency noise on the power supply unit. The EMC noise filters of the LF series are available from Tokin Corporation.

Table 2.6.3 AC line filter specifications							
AC line filter	Continuous rated current	Continuous rated power	Heat dissipati on				
Type A:A81L-0001-0083#3C	24A	5.4kW or less	20W				
Type B:A81L-0001-0101#C	44A	10.5kW or less	70W				
Type C:A81L-0001-0102	100A	23.0kW or less	50W				

Table 2.6.3 AC line filter specifications

2.7 CONNECTOR

Specification : A06B-6093-K311							
Connector name	Part number	Manufacturer	Use	Quantity	Remarks		
CX21	1-179958-4 (housing)	AMP Japan, Ltd.	For input power line	1			
0/21	316041-2 (contact)	Alvir Japan, Llu.	(200 VAC input)	4	Crimp type		

Specification : A06B-6093-K312

Connector name	Part number	Manufacturer	Use	Quantity	Remarks
CX22	1-917807-2 (housing)	AMD lengen lite	For motor power line	1	Crimp tupo
0,722	316040-2 (contact)	AMP Japan, Ltd.	For motor power line	4	Crimp type

Specification : A06B-6093-K313

Connector name	Part number	Manufacturer	Use	Quantity	Remarks
CX22	1-917807-2 (housing) 316041-2 (contact)	· AMP Japan, Ltd.	For motor power line	1 4	Crimp type

Specification : A06B-6093-K315

Connector name	Part number	Manufacturer	Use	Quantity	Remarks
CX20	2-178288-3 (housing)		For separate regenerative discharge resistor (for OH alarm)	1	Crimp type
CX20	1-175218-5 (contact)	AMP Japan, Ltd.		2	
0,700	2-917807-2 (housing)		For separate regenerative	1	
CX23	316041-2 (contact)	AMP Japan, Ltd.	discharge resistor (for resistor)	2	Crimp type

Specification : A06B-6093-K316

Connector name	Part number	Manufacturer	Use	Quantity	Remarks
01104	1-178288-3 (housing)			1	
CX19A	1-175217-5 (contact)	AMP Japan, Ltd.	For control unit 24VDC (IN)	2	Crimp type
01400	1-178288-3 (housing)		For control unit 24VDC	1	
CX19B	1-175217-5 (contact)	AMP Japan, Ltd.	(OUT)	2	Crimp type

Specification : A06B-6093-K317

Connector name	Part number	Manufacturer	Use	Quantity	Remarks
CX19A	1-178288-3 (housing)	AMD Japan 1 td	For control unit 24) (DC (IN)	1	Crime ture
CAT9A	1-175218-5 (contact)	AMP Japan, Ltd.	For control unit 24VDC (IN)	2	Crimp type
01400	1-178288-3 (housing)		For control unit 24VDC	1	
CX19B	1-175218-5 (contact)	AMP Japan, Ltd.	(OUT)	2	Crimp type

3.1 **SPECIFICATIONS**

Table 3.1 (a) Specifications (common)						
	Item	Specifications				
		Voltage: 200 VAC to 240 VAC				
	Three-phase input	Allowable voltage fluctuation: +10%, -15% (Note)				
	power supply for motor	Frequency: 50 Hz, 60 Hz				
	power	Allowable frequency fluctuation: ±2 Hz				
		Voltage fluctuation during acceleration/deceleration: 7% or less				
Dowor		Voltage: 220 VAC to 240 VAC				
Power	Single-phase power	Allowable voltage fluctuation: +10%, -15% (Note)				
supply	supply for motor power	Frequency: 50 Hz, 60 Hz				
	(Note)	Allowable frequency fluctuation: ±2 Hz				
		Voltage fluctuation during acceleration/deceleration: 7% or less				
	Single-phase input power supply for control	Voltage: 24 VDC Allowable voltage fluctuation: ±10%				
	power					
Main	circuit control system	Sinusoidal PWM control based on transistor (IGBT) bridge				
		Converter: main circuit overload alarm				
		Converter: control power supply undervoltage alarm				
		Converter: DC link undervoltage alarm				
A101	m protection function	Inverter: Abnormal current alarm				
Aldi	m protection function	Converter: DC link undervoltage alarm				
		Converter: excessive deceleration power alarm				
		Converter: cooling fan stopped alarm				
		FSSB disconnection alarm				

	Name	Specification	Rated output current (RMS value)	Nominal current limiting (peak value)	
C)/11/4	FSSB interface	A06B-6093-H119	0.0.4 mag	4 Aposk	
SVU-4	I/O Link interface	A06B-6093-H159	0.9 Arms	4 Apeak	
	FSSB interface	A06B-6093-H111			
SVU-12	I/O Link interface	A06B-6093-H151	3.2 Arms	12 Apeak	
	PWM interface	A06B-6093-H101			
	FSSB interface	A06B-6093-H112		20 Apeak	
SVU-20	I/O Link interface	A06B-6093-H152	5.9 Arms		
	PWM interface	A06B-6093-H102			
	FSSB interface	A06B-6093-H113			
SVU-40	I/O Link interface	A06B-6093-H153	12 Arms	40 Apeak	
	PWM interface	A06B-6093-H103			
	FSSB interface	A06B-6093-H114			
SVU-80	I/O Link interface	A06B-6093-H154	18.9 Arms	80 Apeak	
	PWM interface	A06B-6093-H104			

NOTE

The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

The rated output is guaranteed provided the rated input voltage is applied. If the input voltage fluctuates, however, the rated output may not be obtained even if the fluctuation falls within the allowable fluctuation range.

3.2 DERATING

Motor current derating or output derating is required, depending on the motor used.

3.2.1 For SVU-20

Output derating is required to drive $\beta 6/2000$, $\alpha 2/5000i$, $\alpha M2/5000i$, $\alpha M3/5000i$, $\alpha C4/3000i$, $\alpha C8/2000i$, and $\alpha C12/2000i$ with single-phase input.

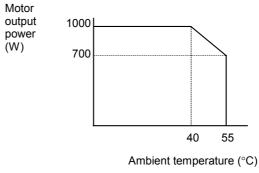


Fig. 3.2.1 Single-phase input time

3.2.2 For SVU-40 and SVU-80

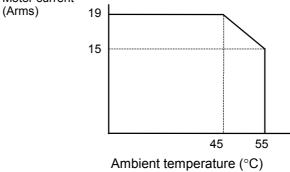

	Motor speci	Motor specifications			Specifications of β series amplifiers SVU-40 and SVU-80		
Motor	Peak current (Ap)	Rated current (Arms)	Rated output (kW)	Peak current (Ap)	Natural air cooling	Forced air cooling	
α 4/4000 <i>i</i>		7.7	1.4		А	А	
α8/3000 <i>i</i>	40	8.4	1.6	40	Not usable.	А	
α M 8/4000 <i>i</i>	40	11.1	2.5		Not usable.	А	
αC22/2000 <i>i</i>		12.3	3.0		Not usable.	А	
αM8/4000 <i>i</i>		11.1	2.0		Not usable.	А	
αM12/4000 <i>i</i>		13.4	2.7		Not usable.	А	
α12/3000 <i>i</i>	80	18.1	3.0	80	Not usable.	B (15Arms at 55°C)	
α 22/3000 <i>i</i>		18.4	4.0]	Not usable.	B (15Arms at 55°C)	
αC30/1500 <i>i</i>		14.2	4.2		Not usable.	А	

Table 3.2.2(a) Three-phase input time

A: Usable without circuit derating at an ambient temperature of up to 55°C for the amplifier.

B: Requires the current derating shown in the following figure. Motor output current derating curve

Motor current

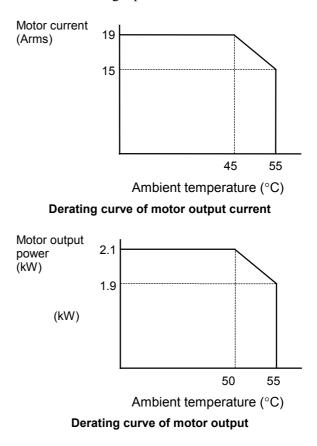

	Motor speci	fications		Specificatio	ons of β series ampli	fiers SVU-40 and SVU-80
Motor	Peak current (Ap)	Rated current (Arms)	Rated output (kW)	Peak current (Ap)	Natural air cooling	Forced air cooling
α4/4000 <i>i</i>		7.7	1.4		А	А
α8/3000 <i>i</i>	40	8.4	1.6	40	Not usable.	A
αM8/4000 <i>i</i>	40	11.1	2.5	40	Not usable.	C (1.9kW at 55°C)
αM8/4000 <i>i</i>	00	11.1	2.0		Not usable.	C (1.9kW at 55°C)
αM12/4000 <i>i</i>	80	13.4	2.7	80	Not usable.	C (1.9kW at 55°C)

Table 3.2.2(b) Single-phase input time

A: Usable without circuit derating at an ambient temperature of up to 55°C for the amplifier.

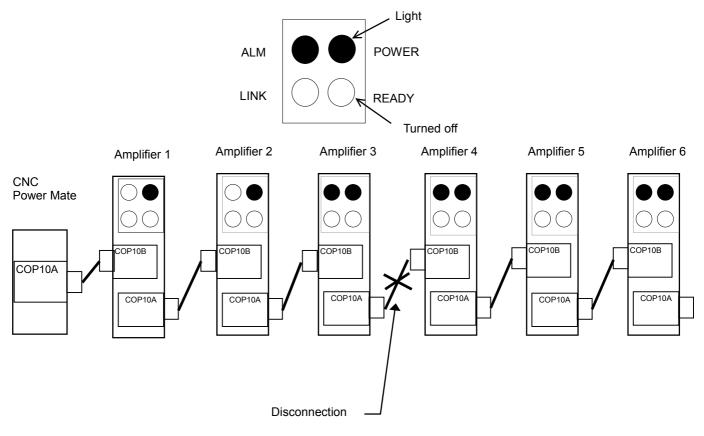
C: Requires the current derating shown in the following figure.

The $\alpha 12/3000i$, $\alpha 22/3000i$, $\alpha C22/2000i$, and $\alpha C30/1500i$ motors cannot be used with the single phase.

3.3 PROTECTION AND ABNORMALITY DETECTION **FUNCTIONS**

The servo amplifier is provided with the protection and abnormality detection functions indicated below.

Determine any alarm status from the diagnostic data displayed by the controller.


- Converter: main circuit overload
- Converter: control power supply undervoltage alarm
- Converter: DC link undervoltage alarm
- Inverter: Abnormal current alarm
- Converter: DC link undervoltage alarm
- Converter: excessive deceleration power alarm
- Converter: cooling fan stopped alarm
- FSSB disconnection alarm

When an alarm is issued, the LED "ALM" is turned on with the FSSB interface and PWM interface, and a 7-segment indicator is turned on with the I/O Link interface. For details of the 7-segment interface, refer to "FANUC SERVO MOTOR β series I/O Link Option Maintenance Manual".

 ● Light ALM ● ● POWER BEADY POWER POWER POWER POWER ALM ALM ALM Check the details of the alarm with diagnostic data on the controller. 	FSSB interface	PWM interface	State	Description
	ALM • • POWER	POWER READY	Alarm	Check the details of the alarm with diagnostic data

When an FSSB disconnection alarm is issued, the faulty location can be identified using the check method described below.

When an FSSB disconnection alarm is issued, the "LINK" and "READY" LEDs are turned off, and the "ALM" LED is turned on.

When the optical cable connecting the third β amplifier with the fourth β amplifier, the "ALM" LEDs on the third and subsequent amplifiers are turned on, and the "LINK" LEDs and the "READY" LEDs are turned off.

3.4 NORMAL OPERATING MODE

In normal operating mode, the LEDs located on the front of the servo amplifier light as indicated below.

FSSB interface	I/O Link interface LED display	PWM interface	State	Description
● Light ALM ○ ● POWER LINK ○ ○ READY			Amplifier NOT READY	Indicates that the control power supply voltage (+24 VDC) is applied.
ALM ○ ● POWER LINK ● ● READY		POWERREADYALM	Amplifier READY	Indicates that the motor has been activated, and that the servo amplifier is ready to accept commands.

Table 3.4 Normal Operating Mode

4 SEPARATED REGENERATIVE DISCHARGE UNIT

4.1 FOR SVU-4, SVU-12, AND SVU-20

4.1.1 Cases Where a Separated Regenerative Discharge Unit Is Not Required

When the amount of regenerative energy produced [J] never exceeds the amounts indicated in Table 4.1, a separated regenerative discharge unit is not required.

For an external connection to be made when a regenerative discharge unit is not used, see Part V, "CONNECTION", of this manual.

An incorrect connection can damage the amplifier. Care must be taken.

Name	Maximum allowable regenerative energy			
SVU-12	13 [J]			
SVU-20	16 [J]			

Calculating the amount of regenerative energy produced

- For horizontal operation
- (a) When the SI unit system is used

 $P = (5.48 \times 10^{-3} \cdot (Jm + JL) \cdot Vm^2 - 5.23 \times 10^{-2} \cdot ta \cdot Vm \cdot TL) [J] \text{ (Expression 1)}$

- *Jm:* Motor rotor inertia [kg·m²]
- *JL*: Load inertia converted to motor shaft inertia $[kg \cdot m^2]$
- *Vm*: Motor speed during rapid traverse $[min^{-1}]$
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]
- *TL:* Machine tool friction torque (in terms of motor) [N·m]
- (b) When the CGS unit system is used

 $P = (5.37 \times 10^{-4} \cdot (Jm + JL) \cdot Vm^2 - 5.13 \times 10^{-3} \cdot ta \cdot Vm \cdot TL) [J] \text{ (Expression1)}$

- *Jm*: Motor rotor inertia [kgf·cm·sec²]
- *JL*: Load inertia converted to motor shaft inertia $[kgf \cdot cm \cdot sec^2]$
- *Vm:* Motor speed during rapid traverse $[min^{-1}]$
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]
- *TL:* Machine tool friction torque (in terms of motor) [kg·cm]

- For vertical operation

(a) When the SI unit system is used

 $Q = 1.047 \times 10^{-1} \cdot Th \cdot Vm \cdot ta$ [J] (Expression 2)

- *Th:* Upward supporting torque applied by the motor during downward rapid traverse $[N \cdot m]$
- *Vm:* Motor speed during rapid traverse [min⁻¹]
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]
- (b) When the CGS unit system is used

 $Q = 1.026 \times 10^{-2} \cdot Th \cdot Vm \cdot ta \ [J]$ (Expression 2)

- *Th:* Upward supporting torque applied by the motor during downward rapid traverse [kg·cm]
- *Vm:* Motor speed during rapid traverse [min⁻¹]
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]

If the operation is vertical, the regenerative energy per operation is a sum of the values of Expressions 1 and 2.

R = P + Q [J] (Expression 3)

4.1.2 Cases Where a Separated Regenerative Discharge Unit Is Required

When the amount of regenerative energy produced [J] exceeds the amounts indicated in Table 4.1, the DC link overvoltage alarm is issued. To prevent this, a separated regenerative discharge unit is required.

For an external connection to be made when a regenerative discharge unit is not used, see Part V, "CONNECTION", of this manual.

<u>An incorrect connection can damage the amplifier. Care must be</u> taken.

Selecting regenerative discharge unit

First, calculate the regenerative energy.

- Servo motor : For horizontal operation

Amount of regenerative discharge (power [W]) when one acceleration/deceleration operation occurs in every F sec during rapid traverse.

(a) When the SI unit system is used

$$w = \frac{1}{E} \times (5.48 \times 10^{-3} \cdot (Jm + JL) \cdot Vm^2 - 5.23 \times 10^{-2} \cdot ta \cdot Vm \cdot TL) [W] \text{ (Expression 4)}$$

F: Frequency of acceleration/deceleration during rapid traverse [sec/occurrence]

Unless otherwise specified, it is assumed that about one acceleration/deceleration operation occurs in every 5 sec during rapid traverse.

- *Jm:* Motor rotor inertia [kg·m²]
- *JL*: Load inertia converted to motor shaft inertia $[kg \cdot m^2]$
- *Vm:* Motor speed during rapid traverse [min⁻¹]
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]
- TL: Machine tool friction torque (in terms of motor) [N·m]
- (b) When the CGS unit system is used

 $w = \frac{1}{E} \times (5.37 \times 10^{-4} \cdot (Jm + JL) \cdot Vm^2 - 5.13 \times 10^{-3} \cdot ta \cdot Vm \cdot TL) [W] \text{ (Expression 4)}$

F: Frequency of acceleration/deceleration during rapid traverse [sec/occurrence]

Unless otherwise specified, it is assumed that about one acceleration/deceleration operation occurs in every 5 sec during rapid traverse.

- *Jm:* Motor rotor inertia [kgf·cm·sec²]
- *JL*: Load inertia converted to motor shaft inertia $[kgf \cdot cm \cdot sec^2]$
- *Vm:* Motor speed during rapid traverse $[min^{-1}]$
- *ta:* Acceleration/deceleration duration during rapid traverse [sec]
- *TL:* Machine tool friction torque (in terms of motor) [kg·cm]

- For vertical operation

Amount of regenerative discharge (power [W]) when the duty cycle of downward vertical operation during rapid traverse is D(%) (a) When the SI unit system is used

- $w = 1.047 \times 10^{-1} \cdot Th \cdot Vm \times \frac{D}{100}$ [W] (Expression 5)
 - *Th:* Upward supporting torque applied by the motor during downward rapid traverse $[N \cdot m]$
 - *Vm*: Motor speed during rapid traverse $[min^{-1}]$
 - D: Duty cycle of downward vertical operation during rapid traverse [%]

The maximum value of D is 50%, and D is usually less than 50%.

(b) When the CGS unit system is used

$$w = 1.026 \times 10^{-2} \cdot Th \cdot Vm \times \frac{D}{100} [W] \text{ (Expression 5)}$$

- *Th:* Upward supporting torque applied by the motor during downward rapid traverse [kg·cm]
- *Vm:* Motor speed during rapid traverse [min⁻¹]
- D: Duty cycle of downward vertical operation during rapid traverse [%]

The maximum value of D is 50%, and D is usually less than 50%.

If the operation is vertical, the regenerative energy per operation is a sum of the values of Expressions 4 and 5.

R' = P' + Q' [W] (Expression 6)

From Table 4.2, select a separated regenerative discharge unit having a regenerative discharge rating greater than the value determined in (1).

Table 4.2 Regenerative discharge ratings of separated regenerative discharge unit

Separated regenerative discharge unit	Regenerative discharge rating	Condition
A06B-6093-H401(30Ω)	20W	
(Caution) A06B-6093-H402(30Ω)	100W	Air flow = 0m/sec

Use a regenerative resistance cable not longer than 1 m. If a cable longer than 1 m is used, the regenerative circuit in the amplifier can malfunction, or the amplifier can be damaged.

NOTE

If a separated regenerative discharge unit is used at a value exceeding the allowable limit, an overheat can occur and activate the built-in thermostat, resulting in an overheat alarm.

4.1.3 For SVU-40 and SVU-80

If the amount of regenerative discharge from a servo motor is so large that it exceeds the regenerative discharge capacity of the regenerative discharge resistor built into the servo amplifier, a separated regenerative discharge unit needs to be used.

When the amount of motor regenerative discharge (R) calculated in Subsection 4.1.2 exceeds the value indicated in Table 4.1.3(a) "Regenerative discharge capacity of the regenerative discharge unit built into a servo amplifier", use a separated regenerative discharge unit

Table 4.1.3(a) Regenerative discharge capacity of the regenerative discharge unit built into a servo amplifier

Servo amplifier	Capacity			
A06B-6093-H103				
A06B-6093-H113				
A06B-6093-H153	7014/			
A06B-6093-H104	70W			
A06B-6093-H114				
A06B-6093-H154				

NOTE

The capacity is fixed at 70 W, regardless of whether natural air cooling or forced air cooling is used. The user should assume a severer use condition to ensure that the amount of regenerative discharge is less than 70 W. If 70 W is exceeded, the long-term reliability can degrade.

The separated regenerative discharge units indicated below are available.

Specify a separated regenerative discharge unit to ensure that the amount of regenerative discharge is less than the discharge capacity.

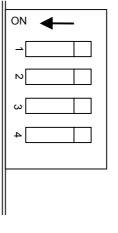
regenerative discharge unit for a servo amplifier						
Separated regenerative Wind speed Wind speed Wind s						
discharge unit	0 m/sec	2 m/sec	4 m/sec			
A06B-6089-H500	R=200W	R=400W	R= 600W			
A06B-6089-H713	With a built-in fan motor for		R= 800W			
AU0B-0009-0713	forced air cooling					

With a built-in fan motor for

forced air cooling

R=1200W

Table 4.1.3(b) Regenerative discharge capacity of a separated


A06B-6089-H714

Switch setting (for SVU-40, SVU-80)

With SVU-40 and SVU-80, four switches are provided on the front of the servo amplifier. Be sure to set the switches to match the resistor used.

If the switches are set incorrectly, the regenerative resistor can be damaged.

From top to bottom, switch 1, switch 2, switch 3, and switch 4 are installed in this order. Each switch is turned on when the lever is at the left, and is turned off when the lever is at the right.

- Setting of switch 1 and switch 2 The switches need to be set according to the regenerative discharge resistor used.
 - \Rightarrow If the switches are not set correctly, the regenerative overheat alarm is not detected correctly.

Switch 1	Switch 2	Regenerative discharge resistor		
ON	ON	Built-in		
ON	OFF	Separate : A06B-6089-H500		
OFF	OFF	Separate : A06B-6089-H713, A06B-6089-H714		

(2) Setting of switch 3 and switch 4Switch 3 and switch 4 are not used. Set these switches off.

4.1.4 Notes on Regenerative Discharge Unit Installation

- 1 A regenerative discharge resistor may be heated to a temperature from 100°C to 200°C. Be careful not to touch the regenerative discharge resistor.
- 2 If a regenerative resistor needs to be touched for a purpose such as maintenance, turn off all the power to the amplifier, wait 30 minutes or more, and check that DC link charge indicator LED (CAUTION CHARGE) is turned off and that the regenerative resistor is sufficiently cooled.
- 3 Install a regenerative resistor sufficiently away from a combustible material.

Drawing number of regenerative	Resistance	Capacity Wind speed 0m/sec 2m/sec			Remark
discharge unit	value			4m/sec	
A06B-6093-H401	30Ω	20W	-	-	For 12/20A
A06B-6093-H402	30Ω	100W	-	-	For 12/20A
A06B-6089-H500	16Ω	200W	400W	600W	For 40/80A
A06B-6089-H713	16Ω	With cooling	fan motor	800W	For 40/80A
A06B-6089-H714	16 Ω	With cooling	g fan motor	1200W	For 40/80A

(1) Drawing numbers

(2) Installation condition $\leq 1 \geq Cautions \text{ on installation}$

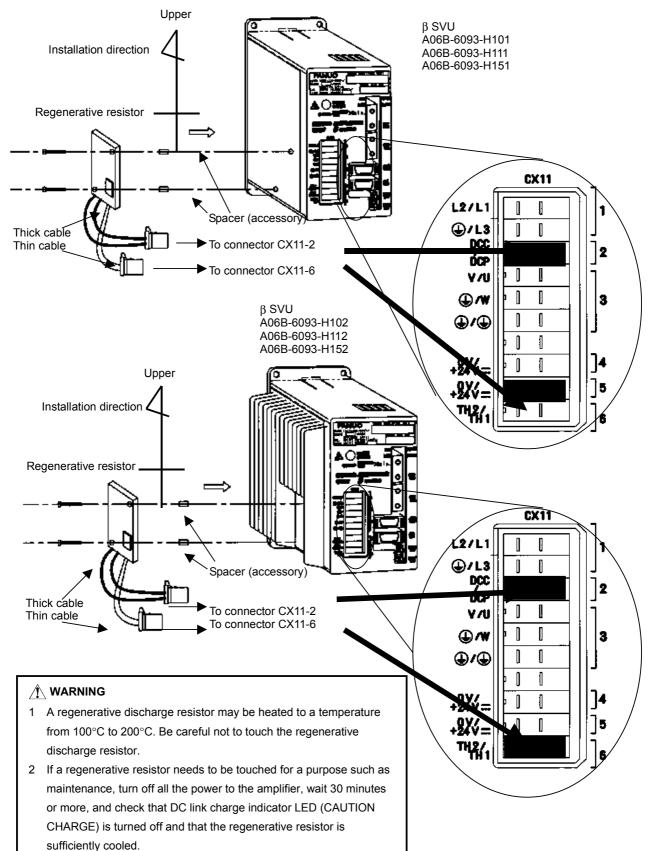
	<1> Cautions on installation				
A06B-6093-H401	- Install a regenerative discharge unit is a completely closed echipat				
A06B-6093-H402	 Install a regenerative discharge unit in a completely closed cabinet. 				
A06B-6089-H500	Install the pin side in a completely closed cabinet, and install the resistor side (heat dissipation portion) in an exhaust duct.				
A06B-6089-H713	 (a) Use the delivered packings. (b) Ensure that the pin side and resistor side (heat dissipation portion) are not exposed to coolant, oil mist, cuttings, and so forth. 				
A06B-6089-H714	(c) To introduce the open air for the resistor (heat dissipation portion), use an air filter at the inlet. Ensure that the cable inlet and outlet, door, and so forth are sealed.				
	<2> Ambient Temperature				

<2> Ambient Temperature

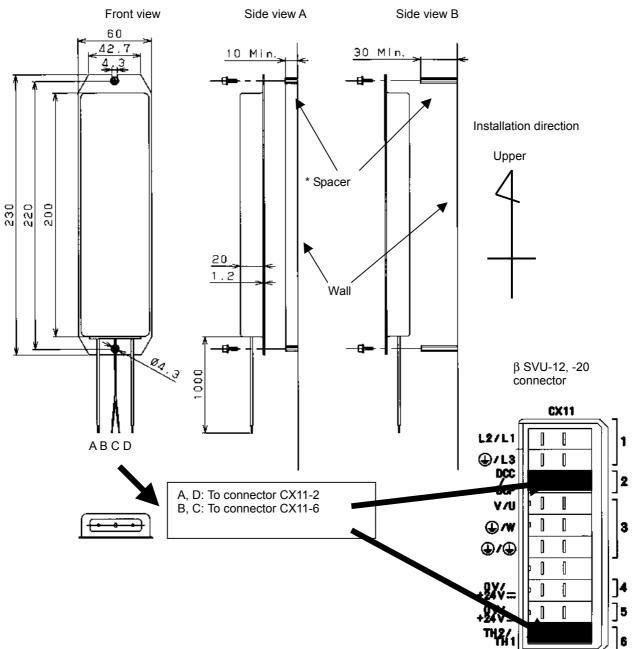
0 to 55 °C (operating)

-20 to 60 °C (storage and transportation)

<3> Humidity

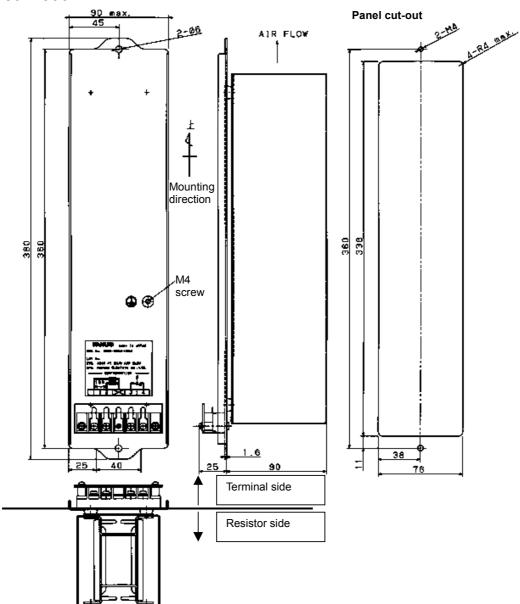

Usually, 95% RH or lower (no condensation)

<4> Vibration


No more than 0.5G during operation

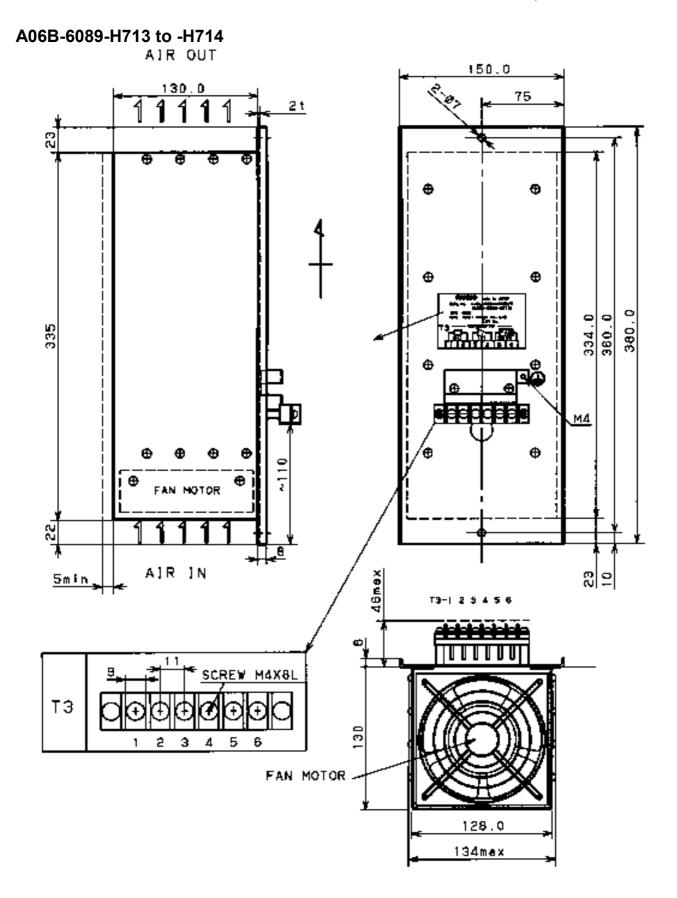
<5> Installation direction

Install a regenerative discharge unit correctly according to the installation drawings that follow.

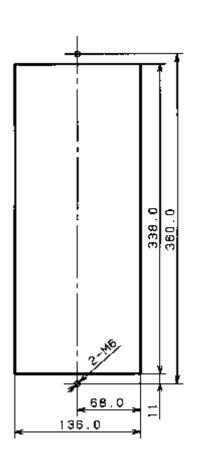

A06B-6093-H401

A06B-6093-H402

- 1 A regenerative discharge resistor may be heated to a temperature from 100°C to 200°C. Be careful not to touch the regenerative discharge resistor.
- 2 If a regenerative resistor needs to be touched for a purpose such as maintenance, turn off all the power to the amplifier, wait 30 minutes or more, and check that DC link charge indicator LED (CAUTION CHARGE) is turned off and that the regenerative resistor is sufficiently cooled.
- 3 Install a regenerative resistor sufficiently away from a combustible material.
- 4 Provide a space of 10 mm or more between a regenerative resistor and the wall.


A06B-6089-H500

- 1 A regenerative discharge resistor may be heated to a temperature from 100°C to 200°C. Be careful not to touch the regenerative discharge resistor.
- 2 If a regenerative resistor needs to be touched for a purpose such as maintenance, turn off all the power to the amplifier, wait 30 minutes or more, and check that DC link charge indicator LED (CAUTION CHARGE) is turned off and that the regenerative resistor is sufficiently cooled.
- 3 Install a regenerative resistor sufficiently away from a combustible material.


NOTE

For oil and dust protection, use the delivered packings.

A06B-6089-H713 to -H714

Panel cut-out

- 1 A regenerative discharge resistor may be heated to a temperature from 100°C to 200°C. Be careful not to touch the regenerative discharge resistor.
- 2 If a regenerative resistor needs to be touched for a purpose such as maintenance, turn off all the power to the amplifier, wait 30 minutes or more, and check that DC link charge indicator LED (CAUTION CHARGE) is turned off and that the regenerative resistor is sufficiently cooled.
- 3 Install a regenerative resistor sufficiently away from a combustible material.

NOTE

For oil and dust protection, use the delivered packings.

5 **POWER SUPPLY**

5.1 INPUT POWER SUPPLY

5.1.1 Three-phase Input Power Supply for Motor Power

- Nominal rated voltage: 200 to 240 VAC
- Allowable voltage fluctuation: -15% to +10%
- Frequency: 50/60 Hz
- Allowable frequency fluctuation: ±2 Hz
- Power supply impedance: Voltage fluctuation cased by load (at maximum output) not to exceed 7%
- Power supply unbalance: Within $\pm 5\%$ of the rated voltage

NOTE

The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

5.1.2 Single-phase Input Power Supply for Motor Power

In European countries, power sources are 380 to 415 VAC and neutral-grounded. To use the β series amplifiers in these European countries, it is necessary to install a power transformer at the input or supply single-phase power.

To use the motors with single-phase power, observe the following:

- (1) Power supply specification
 - Nominal voltage rating: <u>220 to 240 VAC</u>
 - Allowable voltage fluctuation: -15% to +10%
 - Frequency: 50/60 Hz
 - Allowable frequency fluctuation: ±2 Hz
 - Voltage fluctuation at acceleration/deceleration: 7% or less

NOTE

The allowable voltage fluctuation is a change observed for several minutes. It is not a continuous change.

5.1.3 Single-phase Input for Control Power

- Nominal rated voltage: 24VDC
 - Allowable voltage fluctuation: ±10% (including momentary variations)
 - Power supply ratings

	Power supply rating per amplifier
FSSB interface	0.6A
I/O Link interface	0.9A
PWM interface	0.4A

5.2 POWER SUPPLY RATINGS

5.2.1 Three-phase Input Power Supply Ratings for Motor Power

- (1) The power supply rating necessary when using multiple servo motors can be determined by summing the rating of the power supplies required by the individual motors.
- (2) The power supply ratings listed in Table 5.2.1 are sufficient as continuous ratings. Note, however, that servo motor acceleration causes a current that is roughly triple the continuous rating to flow momentarily.
- (3) When the power is turned on, a surge current of about 37 A (when 264 VAC is applied) flows the 20 msec.

Power supply rating per motor Power supply rating per n				
Motor model	(three-phase power input)	(single-phase power input)		
	(kVA)	(kVA)		
βM0.2/4000	0.08	0.10		
βM0.3/4000	0.15	0.19		
β1/3000	0.46	0.57		
β2/3000	0.77	0.95		
βM0.4/4000	0.20	0.25		
βM0.5/4000	0.31	0.38		
βM1/4000	0.62	0.76		
β3/3000	0.77	0.95		
β 6/2000	1.4	1.7		
α1/5000 <i>i</i>	0.77	0.95		
α2/5000 <i>i</i>	1.2	1.4		
α 4/4000 <i>i</i>	2.2	2.7		
α8/3000 <i>i</i>	2.5	3.0		
α12/3000 <i>i</i>	4.6	4.2 (*1)		
α 22/3000 i	6.2	4.2 (*1)		
αM2/5000 <i>i</i>	1.2	2.3		
αM3/5000 <i>i</i>	1.5	1.9		
α M8/4000 <i>i</i>	3.9	4.2 (*1)		
αM12/4000 <i>i</i>	4.2	4.2 (*1)		
αC4/3000 <i>i</i>	1.5	1.9		
αC8/2000 <i>i</i>	1.9	1.9		
αC12/2000 <i>i</i>	2.8	1.9		
αC22/2000 <i>i</i>	4.6	4.2 (*1)		
αC30/1500 <i>i</i>	6.5	4.2 (*1)		

Table 5.2.1 Three-phase power supply ratings

(*1) Depends on the output limit applicable when single-phase input is used.

5.3 POWER TRANSFORMER FOR EXPORTS

Use power transformer for an export when this servo amplifier unit is used at a site where the line voltage is other than 200 to 240 VAC.

5.3.1 Specification

Table 5.3.1 Specification of power transformer					
Ordering drawing number	A80L-0022-0005	A80L-0024-0006	A80L-0026-0003	A80L-0028-0001	
FANUC drawing number	A80L-0022-0005	A80L-0024-0006	A80L-0026-0003	A80L-0028-0001	
Rated capacity	2.2kVA	3.5kVA	5kVA	7.5kVA	
	200/220/230/240VAC (∆ connection)				
Rated primary voltage		380/415/460/480/550VAC (Y connection)			
)Hz±2Hz; 3ø		
Rated secondary voltage			VAC	[
Rated secondary current	6.1A	9.6A	13.7A	20.6A	
Voltage regulation at the secondary		2	%		
Voltage deviation at the secondary		±3	3%		
Connection		Δ - Δ connection c	or Y- Δ connection		
Insulation	Class	s B (maximum allowa	able temperature : 13	30°C)	
Ambient temperature	-20 to 55°C				
Allowable temperature rise		135	deg		
Relative humidity		Max. 9	5%RH		
Туре		Dry type, natura	l air cooling type		
Dielectric withstand voltage		2300VAC, 1	for 1 minute		
Weight	Max. 21kg	Max. 27kg	Max.36kg	Max. 42kg	
Outline drawing		Fig.	8.1.3		
Connection diagram	Fig. 8.1.3				

5.3.2 How to Select a Transformer

Select a transformer according to the load condition and the model of the motor for which the transformer is used. Each transformer has secondary winding taps for three amplifiers so that it can be connected to two or three amplifiers.

For a machine with typical operating conditions, select a transformer according to the following guideline.

(Sum of three-phase power requirements of all models) $\times 0.6 \le$ transformer rating Table 5.2.1 Table 5 3 1

When two or more motors are used, the transformer rating obtained using the above expression may be less than the actual power requirements of any one of those motors. Should this occur, use the motors' maximum power requirements as the transformer rating. (Example)

The power requirements of the $\alpha 22/3000i$ and $\alpha 2/5000i$ are indicated in Table 5.2.1, as shown below :

α22/3000*i* :6.2 kVA

α2/5000*i* : 1.2 kVA

Using the expression given above, the transformer rating is calculated as follows :

 $(6.2 + 1.2) \times 0.6 = 4.4 \text{ kVA}$

The power requirement of the $\alpha 22/3000i$ is 6.2 kVA, this being greater than the calculated transformer rating of 4.4 kVA. So, the transformer rating should be 6.2 kVA.

6 **HEAT DISSIPATION**

Heat dissipation of β series amplifier is as follows :

Ordenia a muschen	Interface	Total amount of heat dissipation (W)	Residual amount of heat in the cabinet (W)	
Ordering number	Interface		Without forced air cooling	With forced air cooling
A06B-6093-H119	SVU-4 (FSSB interface)	11	11	-
A06B-6093-H159	SVU-4 (I/O Link interface)	12	12	-
A06B-6093-H111	SVU-12 (FSSB interface)	19	19	-
A06B-6093-H151	SVU-12 (I/O Link interface)	20	20	-
A06B-6093-H101	SVU-12 (PWM interface)	18	18	-
A06B-6093-H112	SVU-20 (FSSB interface)	34	34	-
A06B-6093-H152	SVU-20 (I/O Link interface)	35	35	-
A06B-6093-H102	SVU-20 (PWM interface)	33	33	-
A06B-6093-H113	SVU-40 (FSSB interface)	53	20	15
A06B-6093-H153	SVU-40 (I/O Link interface)	53	20	15
A06B-6093-H103	SVU-40 (PWM interface)	53	20	15
A06B-6093-H114	SVU-80 (FSSB interface)	78	27	17
A06B-6093-H154	SVU-80 (I/O Link interface)	78	27	17
A06B-6093-H104	SVU-80 (PWM interface)	78	27	17

Table 6.1 Total heat dissipation of each servo amplifier ß series

TINSTALLATION CONDITIONS AND NOTES

7.1 ENVIRONMENTAL CONDITIONS

Install a β setting servo amplifier in a completely closed cabinet so that the environment conditions indicated below can be satisfied.

(1) Ambient Temperature Ambient temperature

0 to $55^{\circ}C$ (operating)

-20 to 60°C (storage and transportation)

Ambient temperature of the accommodation cabinet 0 to 45°C

- (2) Humidity Usually, 95% RH or lower (no condensation)
 (2) With the second secon
- (3) Vibration No more than 0.5G during operation
- (4) Atmosphere Ensure that the electronic circuits are not exposed to corrosive and conductive mist and waterdrops. (Note)
- (5) Notes on installation
 - When installing an amplifier, consider the following:
 - (a) Ensure that the heat sink is not exposed to coolant, oil mist, cuttings, and so forth. Otherwise, the cooling efficiency can degrade, resulting in a failure to satisfy the characteristics of the amplifier. Moreover, the life of semiconductors can be adversely affected.

To introduce the open air for the heat sink, use an air filter at the inlet.

Ensure that the cable inlet and outlet, door, and so forth are sealed.

NOTE

The electronic circuits must be installed in an environment of contamination level 2 defined in IEC60664-1.

In order to satisfy contamination level 2 in a severe environment for using machine tools, the servo amplifier β series must be installed in a cabinet that satisfy IP54.

- (b) Ensure that dust, coolant, and so forth do not penetrate through the exhaust vent. Moreover, ensure that the flow of cooling wind is not interrupted.
- (c) Ensure that the servo amplifier β series can be inspected, removed, and reinstalled easily in maintenance.

7.2 SELECTING A GROUND FAULT INTERRUPTER

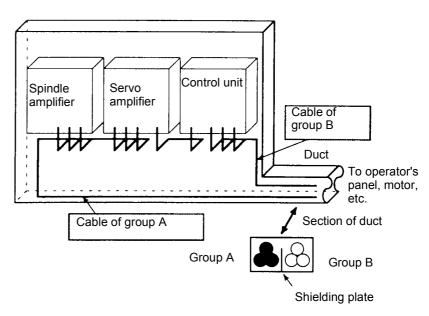
To protect against electric shocks, be sure to install a ground fault interrupter at the input section of the machine. The β series servo amplifier drives a motor by means of the transistor-based PWM inverter method, in which a high-frequency leakage current flows to ground through the stray capacitance of the motor widings, power cable and amplifier.

The ground fault interrupter or leakage-protection relay, installed on the power supply side, can malfunction if such a leakage current should flow. So, select an inverter-compatible ground fault interrupter to protect against the occurrence of this malfunction. For the leakage current of each motor, use the values indicated in the table below as a guideline.

Motor model	Commercial frequency component (mA)
βM0.2 to βM1	
$\alpha 1i$ to $\alpha 8i$	1.8
$\alpha M2i$ to $\alpha M8i$	1.0
$\alpha C4i$ to $\alpha C8i$	
α 12 <i>i</i> to α 22 <i>i</i>	
α M12 <i>i</i>	2.0
α C12 <i>i</i> to α C22 <i>i</i>	
αC30 <i>i</i>	2.5

7.3 NOISE PROTECTION

7.3.1 Separation of Signal Lines

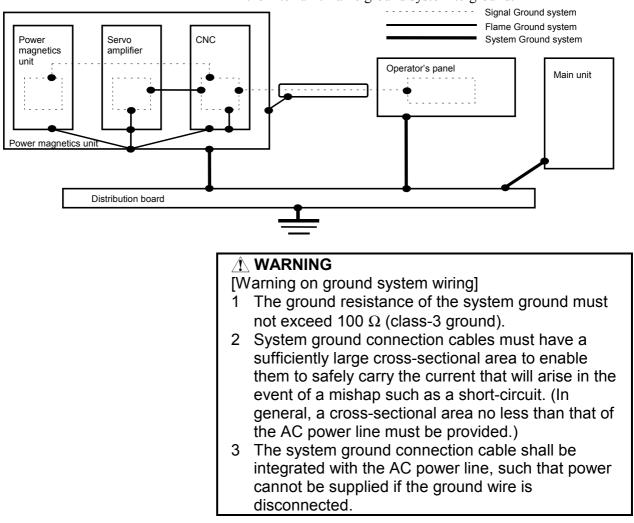

If a power cable and signal cable run close to each other, noise can be induced. So, ensure that a power cable is separated from a signal cable. When a power cable and signal line cannot be separated from each other for a reason, minimize the distance by which the two cables run in parallel. When conduits are used, run a power cable through one conduit, and run a signal cable through another conduit.

	Cable type					
Group	Signal	Action				
	Amplifier input power line	Separate these cables from those				
А	Motor power line	of group B by bundling them				
A	Magnetic contactor drive coil	separately (Note 1) or by means of				
	(Note 3)	electromagnetic shielding (Note 2).				
	Cable connecting the control	Separate these cables from those				
	unit and servo amplifier	of group A by bundling them				
в	Sensor cable	separately (Note 1) or by means of				
В		electromagnetic shielding(Note 2).				
	Position coder cable	In addition, shielding must be				
		provided.				

NOTE

- 1 The bundle of group A cables must be separated from the bundle of group B cables by at least 10 cm.
- 2 Electromagnetic shielding involves shielding groups from each other by means of a grounded metal (steel) plate.
- 3 Attach a noise suppressor such as a spark killer to the magnetic contactor drive coil.

<u>7.INSTALLATION CONDITIONS AND NOTES</u> FANUC AC SERVO AMPLIFIER β series B-65232EN/03



Cabinet

7.3.2 Grounding

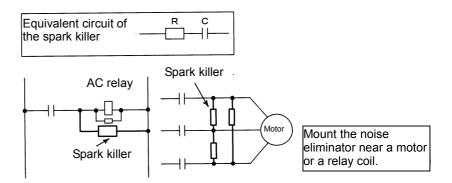
A CNC machine tool has three separate ground systems:

- Signal ground (SG) system
 The signal ground (SG) system provides the reference potential (0V) for the electrical signal system.
- (2) Frame ground (FG) system The frame ground (FG) system is provided to ensure safety and to shield external and internal noise. For example, the equipment frames, unit cases, panels, and interface cables connecting devices are all shielded.
- (3) System ground system The system ground system is designed to connect each unit and the inter-unit frame ground system to ground.

7.3.3 Noise Suppressor

The AC/DC solenoid and relay are used in the power magnetics cabinet.

A high pulse voltage is caused by coil inductance when these devices are turned on or off.

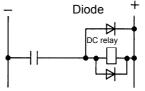

This pulse voltage induced through the cable causes the electronic circuits to be disturbed. In general, to reduce this pulse voltage, a spark killer is used in AC circuits, while a diode is used in DC circuits.

Spark killer

Use a spark killer consisting of a resistor and capacitor in series. This type of spark killer is called a CR spark killer. (Use it under AC)

(A varistor is useful in clamping the peak voltage of the pulse voltage, but cannot suppress the sudden rise of the pulse voltage. FANUC therefore recommends a CR spark killer.)

- The reference capacitance and resistance of the spark killer shall conform to the following based on the current (I(A)) and DC resistance of the stationary coil:
 - \Box Resistance (R) : Equivalent DC resistance of the coil
 - Capacitance (C) : $I^2/10$ to $I^2/20$ (µF)
 - I : Current at stationary state of the coil (A)



Use a CR-type noise eliminator. Varistor-type noise eliminators clamp the peak pulse voltage but cannot suppress a sharp rising edge.

Diode

Diode (used for direct-current circuits)

Use a diode which can withstand a voltage up to two times the applied voltage and a current up to two times the applied current.

7.3.4 Cable Clamp and Shield Processing

- Shield terminal processing Process the terminal of the shield cover of a signal line according to Chapter 10, "DETAILS OF CABLE CONNECTION".
 - Shield clamping The amplifier cables that require shielding should be clamped by the method shown below. This cable clamp treatment is for both cable support and proper grounding of the shield. To insure stable CNC system operation, follow this cable clamp method. Partially peel out the sheath and expose the shield. Push and clamp by the plate metal fittings for clamp at the part.
- Installation of a ground plate The user is to prepare a ground plate and install it according to Fig. 5.3.2(b) to (e).

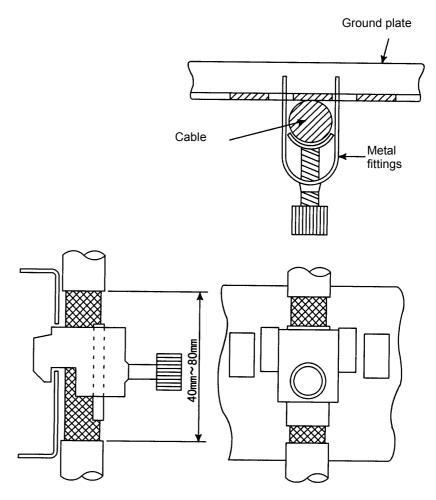
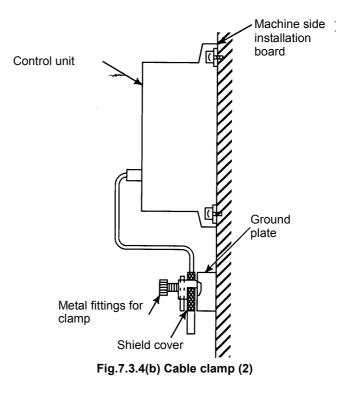



Fig.7.3.4(a) Cable clamp (1)

Prepare ground plate like the following figure.

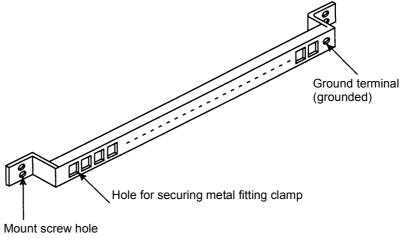
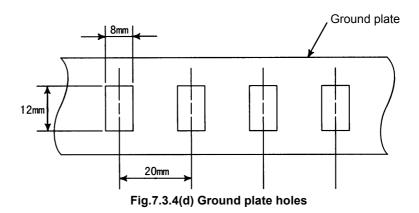



Fig.7.3.4(c) Ground plate

For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

(Reference) Outer drawings of metal fittings for clamp.

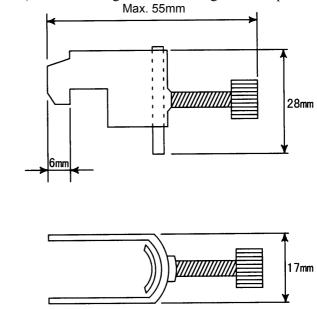
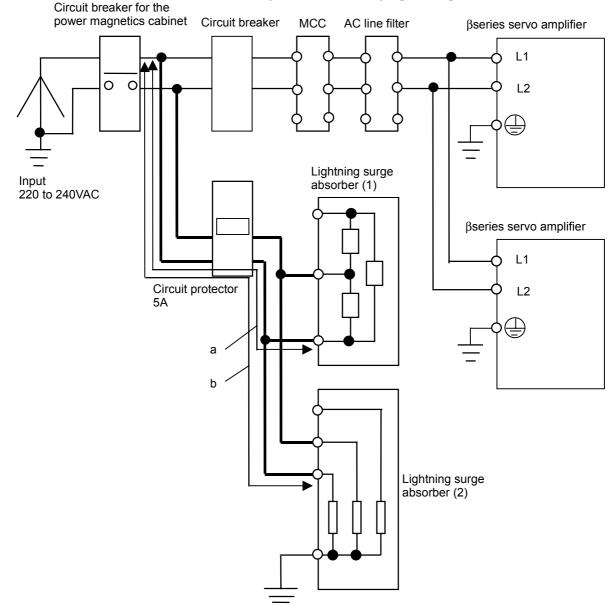
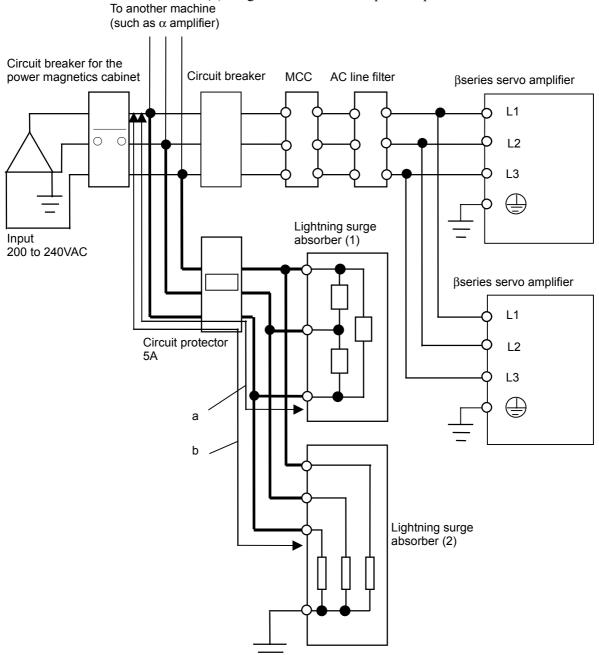



Fig.7.3.4(e) Outer drawings of metal fittings for clamp

Ordering specification for metal fittings for clamp A02B-0214-K001 (2 pieces)


7.4 INSTALLING LIGHTNING SURGE ABSORBERS

At the power input of the power magnetics cabinet, install a surge absorber between the power lines and between each power line and a ground to protect the unit from a voltage surge caused by lightning. How to install the surge absorber is shown below.

(1) Surge absorber for single-phase input

B-65232EN/03 FANUC AC SERVO AMPLIFIER β series 7.INSTALLATION CONDITIONS AND NOTES

(2) Surge absorber for three-phase input

Â	
1	Make the wires shown with thick line in the above
	diagram as short as possible in order to increase
	the effect of the lightning surge absorber.
	Wire Cross section : At least 2mm ²
	Length : Keep the total wire length (a+b) to
	within 2m, where a = length of wire
	used to connect lightning surge
	absorber (1) $b = length of wire used$
	to connect lightning surge absorber
	(2)
2	When performing a dielectric strength test by
	applying an overvoltage (such as 1000 or 1500
	VAC) to a power line, remove lightning surge
	absorber (2) so that it will not operate.
3	
•	lines if a lightning surge absorber is damaged due
	to a surge that is higher than the maximum
	allowable voltage of the surge absorber.
4	
4	Usually, no current flows through the lightning
	surge absorbers. So the circuit protector (5A) may
	be used also for other sections (such as power
	supply module control power and spindle motor fan
	power).

The following table lists commercially available lightning surge absorbers.

Lightning surge absorber	Manufacturer's specification Okaya Electric Industries	Clamp voltage [V]±10%	Maximum allowable surge current 8/20μsec [A]	Maximum allowable surge voltage 1.2/50µsec [V]	Maximum allowable circuit voltage [Vrms]
<1>	R·A·V-781BYZ-2	783	1000	12000	300
<2>	R·A·V-781BXZ-2A	783	1000	12000	300

Table 7.5.1(a) Lightning surge absorbers (not complying with the relevant standards)

Lightning surge absorber	Manufacturer's specification Okaya Electric Industries	Clamp voltage [V]±10%	Maximum allowable surge current 8/20µsec [A]	Maximum allowable surge voltage 1.2/50µsec [V]	Maximum allowable circuit voltage [Vrms]
<1>	R·A·V-781BYZ-2	783	1000	12000	300
<2>	R·A·V-781BXZ-4	783	1000	12000	300

8.1 OVERVIEW

The β series servo amplifiers are designed to the following European safety standard.

DIN VDE 0160:1988/A1:1989

(Electronics devices to be used in power equipment and their installation in it)

This chapter supplements conditions for installation of the β series servo amplifiers, focusing on safety standard-related topics. If you want to acquire a CE mark for your power magnetics cabinet based on the EC machine commands (based on 89/392/EEC), be sure to satisfy this requirement in designing the power magnetics cabinet.

Remark

To acquire a CE mark for equipment, it is necessary to make the equipment comply with the related EN standard, EN60204-1 (general requirements for electric equipment for industrial machines).

If there is an EN standard (or IEC standard if there is no EN standard) that applies to machine components, the components used in your machine must conform to the standard.

Because there is no EN standard (IEC standard) for amplifiers at present, FANUC is using amplifiers that comply with the VDE standard according to the result of investigation made by TÜV Rheinland, which is a qualified certifying agency.

Therefore, the β series servo amplifiers satisfy the requirements to acquire a CE mark. So you can use them without anxiety.

8.2 STANDARD CATEGORIES RELATED TO INSULATION DESIGN

- (1) Insulation between circuits and protective grounding
 - The amplifiers are designed to the DIN VDE 0160 standard, so they conform to Part 1 of DIN VDE 0110 and related standards.
 - The primary side (power source and main circuit side) is separated from the secondary side (control circuit side) for safety with reinforced insulation.
 - The circuits are isolated from the protective grounding with fundamental insulation.

The power supply main circuit and heat sinks are isolated from one another with fundamental insulation. So, the grounding terminal of a heat sink should be connected to the protective grounding line as shown in Section 8.7.

(2) Installation category (overvoltage category)

DIN VDE 0110 (electric device insulation harmony) classifies power supply equipment by the amplitude of an impulse voltage contained in the power supply for the amplifier in reference to a ground potential. The β series servo amplifiers are classified in installation category (overvoltage category) II.

This category requires that the rated impulse dielectric strength (measured in reference to a ground potential) in a power supply connected to the amplifiers be not higher than 2.5 kV. Any impulse voltage higher than 2.5 kV in reference to a ground potential must be eliminated from the power supply.

Generally, an isolation transformer at the input section of the power supply of a machine would make the machine satisfy that requirement. If the power supply does not use an isolation transformer, a lightning surge absorber should be installed between the power and ground lines to suppress an impulse voltage higher than 2.5 kV in reference to a ground potential.

(3) Installation environment contamination level and power magnetics cabinet protection grade EN60204-1 (Chapter 13/Section 13.3) states that machines to be installed in an ordinary factory environment satisfy protection grade IP54 or higher against dust debris, cutting fluid, and cutting chips. The β series servo amplifiers do not satisfy IP54 unless an additional measure is taken. So they should be installed within a power magnetics cabinet that satisfies IP54. The IP grade to be satisfied varies with the environment (atmosphere) in which the machine is installed. So, it is necessary to select the protection grade for the power magnetics cabinet according to the environment in which it is installed. The β series amplifiers are designed on the assumption that they are installed in an environment with a contamination level of 2. So, the contamination level for the power magnetics cabinet must be 2 or below.

8.3 PROTECTION AGAINST SHOCK HAZARDS

(1) Preventing direct contact with live parts

The β series servo amplifiers, after installed, satisfy a protection grade of IP1X (hand protection), which prevents unconscious or inadvertent contact.

The β series servo amplifiers shall be installed within a power magnetics cabinet. When they are powered, the power magnetics cabinet shall be locked according to EN60204-1 so that any person other than specialist service personnel (including those sufficiently trained in avoiding shock hazards and qualified for maintenance) cannot open it.

Should if a machine operator must open the power magnetics cabinet and act on it, the operator shall be sufficiently trained for safety beforehand, or a provision, such as a protection cover, to keep the operator from touching the amplifiers shall be installed in advance.

(2) Confirming electrolytic capacitor discharge

The β series amplifiers contain electrolytic capacitors with a high capacitance in their smoothing circuits. These capacitors remain charged for a while after the power input is shut off. If you need to touch an amplifier, for example, for maintenance purposes, wait for at least two minutes after the power is switched off, or confirm safety by measuring the remaining voltage in the DC link section and making sure that the red LED to indicate "charge" is off.

DC voltages higher than 60V are assumed to be dangerous, according to the relevant standards.

(3) Current leakage to a protective grounding wire

Servo motors are controlled by changing the average amplitude and frequency of a voltage applied to their armature (winding) using pulse width modulation.

A chopper voltage with a carrier frequency of several kHz is applied to the motor power lines for pulse width modulation.

The motor current partly leaks to the protective grounding wire of the motor power cord and a ground through stray capacitances mainly between the motor armature winding and casing and between the motor power line and a protective ground. Part of the leakage current flows through the protective grounding wire of the machine. This leakage current is about 0.4 to 0.5mA per motor, measured at the commercial frequency (50/60Hz). It is increased to 2.0mA when measured with an EN60950 compliant measurement circuit, because the measurement circuit has a relatively high sensitivity to higher frequency components.

If the machine is not grounded to a substantial earth ground, you may get shocked when touching the machine. To avoid shock hazards:

- Use wire whose cross section is 10mm² or larger for protective grounding.
- Install a ground-fault circuit interrupter to shut off the power instantly on a ground fault.
- Install an additional protective grounding terminal to the cabinet for duplicated protective grounding connection.

The ground-fault circuit interrupter used for the machine should be an electromagnetic type with a low sensitivity to high frequency components or an electronics type usable together with an inverter, so that a malfunction will not occur.

8.4 PROTECTIVE GROUNDING

The β series servo amplifiers have more than one protective grounding terminal (marked according to 417-IEC-5019). These terminals are used to prevent shock hazards should a dielectric breakdown occur, and to prevent a malfunction due to noise.

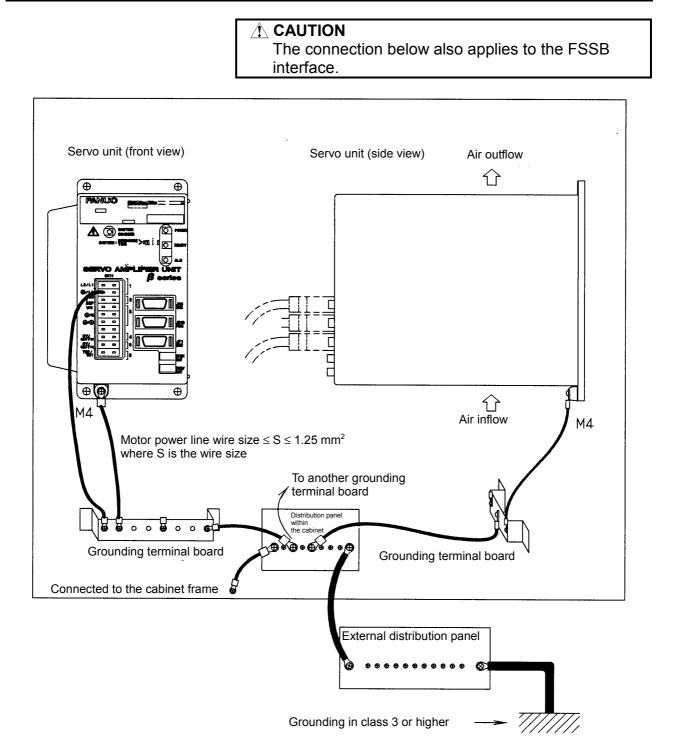
All protective grounding terminals shall be connected to the protective grounding connection terminal (PE) in the power magnetics cabinet.

The protective grounding connections you installed should be checked according to the indicated connection instruction (shown in Section 8.7). Moreover, it is necessary to make sure that the cross section of the protective grounding wires is larger than that of the power wire.

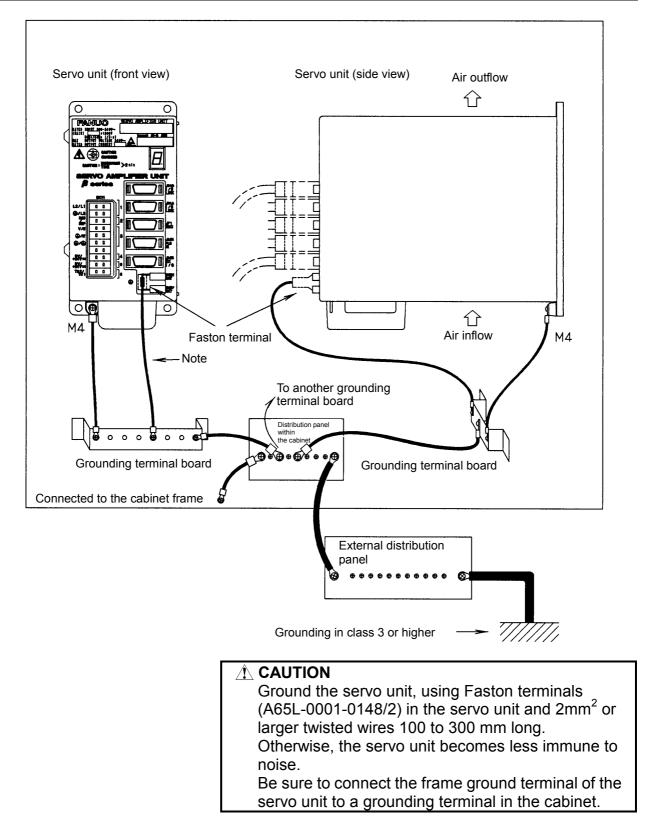
Do not attach more than one wire to a single protective grounding terminal. So prepare protective grounding terminals for the number of protective grounding wires to be attached.

8.5 CAUTIONS FOR CONFIGURING AN EMERGENCY STOP CIRCUIT

The power shut-off method used in the β series servo amplifiers is based on an IGBT (transistor) rather than an electromechanical device. The emergency stop circuit must be so configured that operating the emergency stop switch can turn off directly a line connector installed on the power input line of the servo amplifiers.

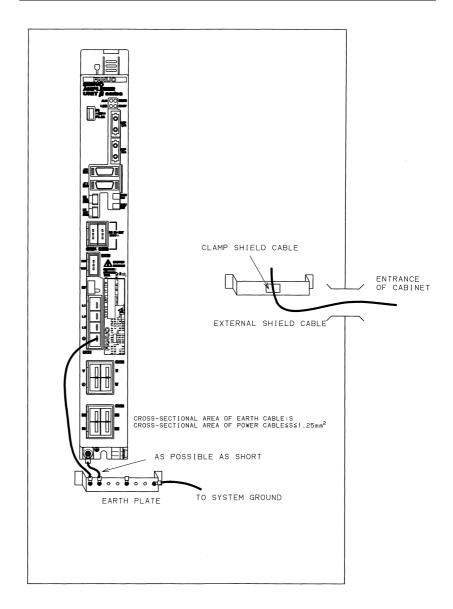

8.6 SUPPRESSING ELECTROMAGNETIC INTERFERENCE

The β series amplifiers conform to EN55011 group 1/class A for interference noise due to radiation or conduction.


To make a machine using the β series amplifiers conform to the EMC command, take necessary measures according to the guideline published by FANUC (document No.: A-72937E).

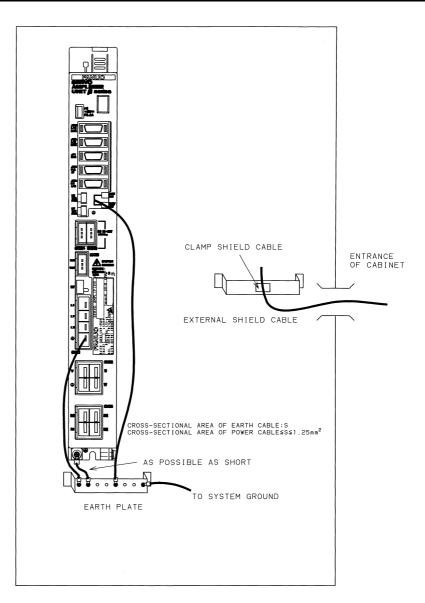
8.7 PROTECTIVE GROUND WIRE CONNECTION

8.7.1 SVU-4/12/20 (PWM Interface)


8.7.2 SVU-4/12/20 (I/O Link Interface)

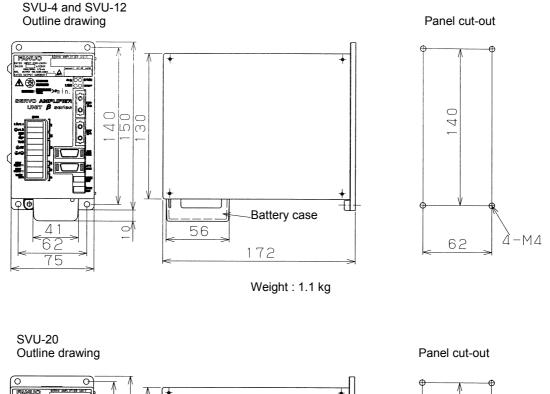
B-65232EN/03 FANUC AC SERVO AMPLIFIER β series 8. CAUTIONS FOR SAFETY STANDARDS RELATED TO AMPLIFIER INSTALLATION

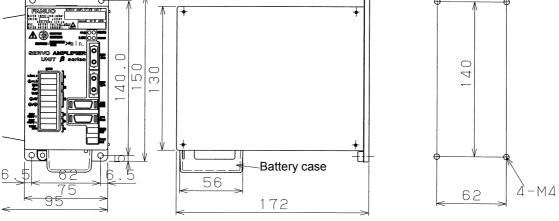
8.7.3 SVU-40/80 (FSSB Interface)


▲ CAUTION The connection below also applies to the PWM interface.

A shield cable from the outside of the power magnetics cabinet must be connected using a grounding clamp to the ground plate located very close to the inlet of the cabinet. The purpose of this processing is to prevent inter-cabinet noise from being radiated to the outside.

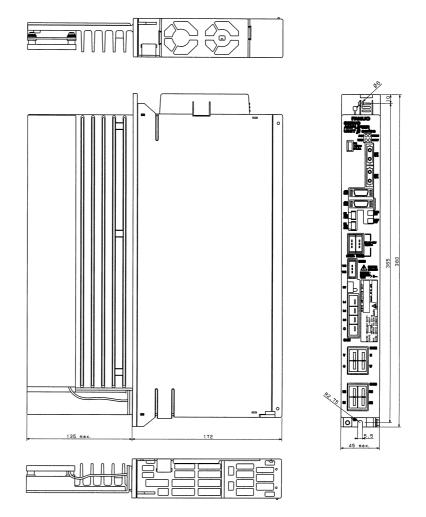
8.7.4 SVU-40/80 (I/O Link Interface)




- 1 A shield cable from the outside of the power magnetics cabinet must be connected using a grounding clamp to the ground plate located very close to the inlet of the cabinet. The purpose of this processing is to prevent inter-cabinet noise from being radiated to the outside.
- 2 Ground the servo unit, using Faston terminals (A65L-0001-0148/2) in the servo unit and 2mm² or larger twisted wires 100 to 300 mm long. Otherwise, the servo unit becomes less immune to noise.
 Be sure to connect the frame ground terminal of the servo unit to a grounding terminal in the cabinet.

9.1 OUTLINE DRAWINGS AND PANEL CUT-OUT DRAWINGS

9.1.1 Servo Amplifier Unit SVU-4,SVU-12,SVU-20 (FSSB Interface)

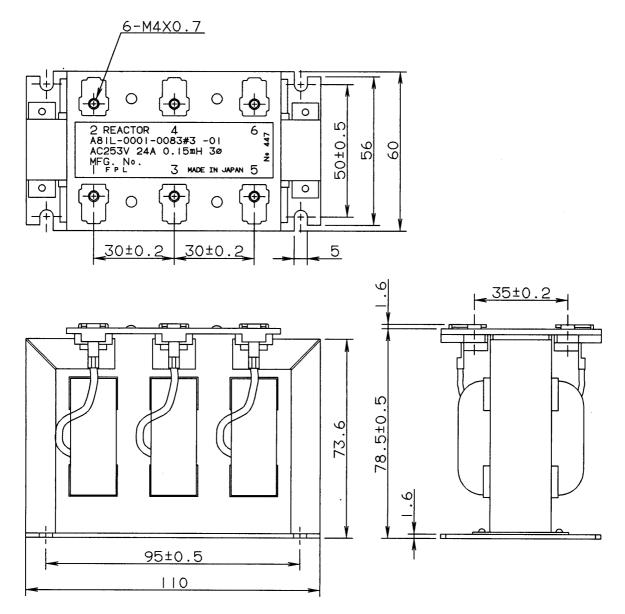


Weight : 1.2 kg

NOTE

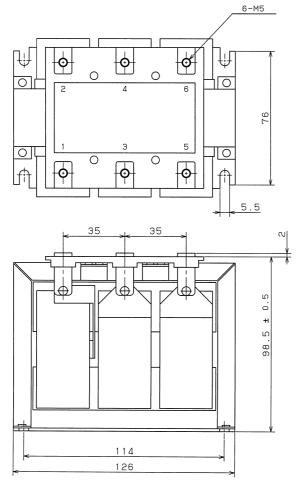
- 1 The outside dimensions of the FSSB interface, I/O Link interface, and PWM interface are the same. Shown above are the FSSB interface versions.
- 2 The battery case is required only when an absolute pulse coder is used.

9.1.2 Servo Amplifier Unit SVU-40,SVU-80 (FSSB Interface)

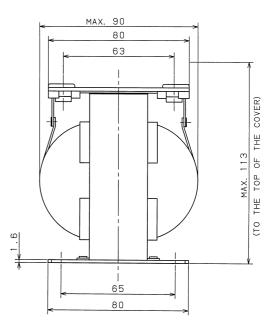

Weight : 3.9kg (applicable to all interfaces)

NOTE

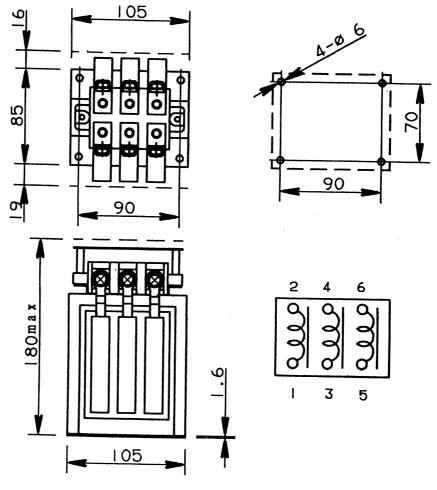
The outside dimensions of the FSSB interface, I/O Link interface, and PWM interface are the same. Shown above are the FSSB interface versions.

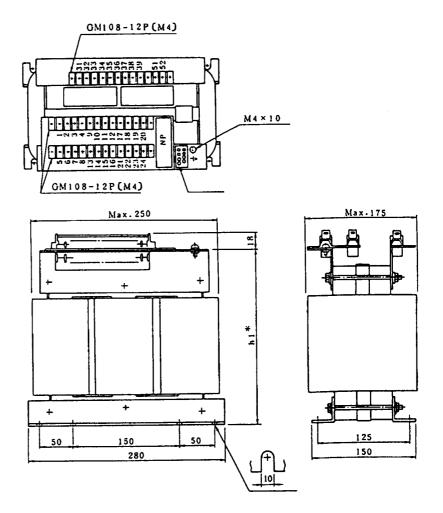

9.1.3 AC Line Filter

A81L-0001-0083#3C



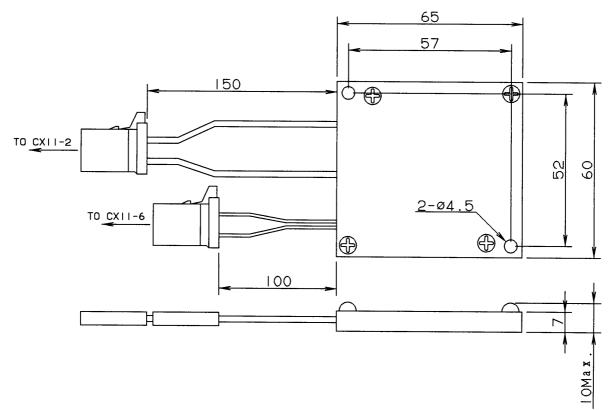
Weight : 1.1kg

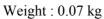

A81L-0001-0101#C

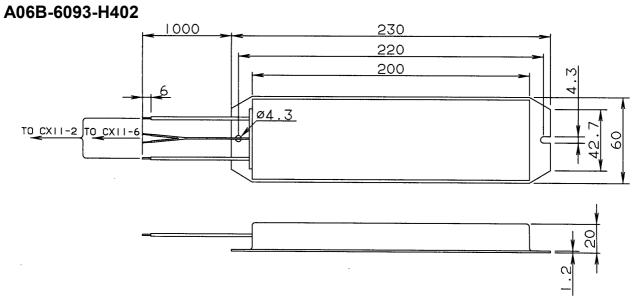


A81L-0001-0102

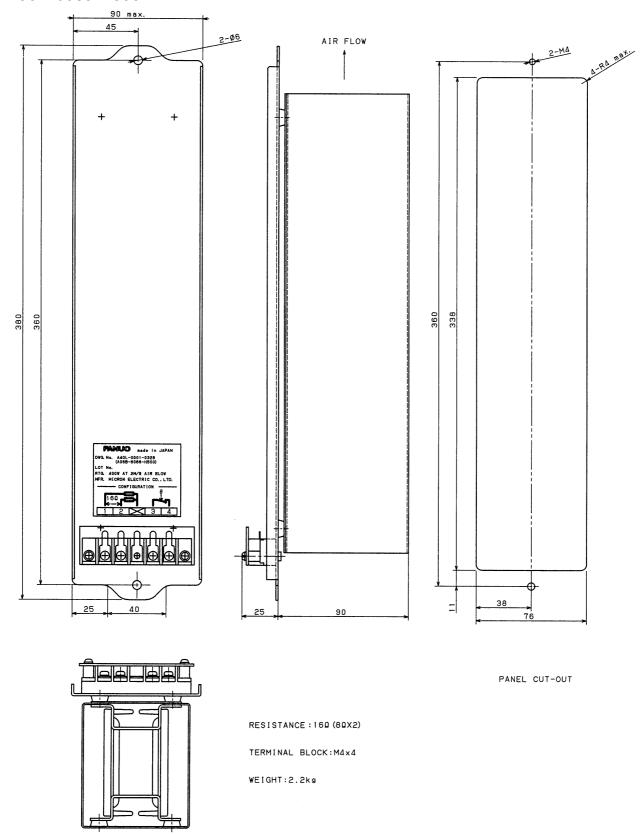
Weight : 3kg

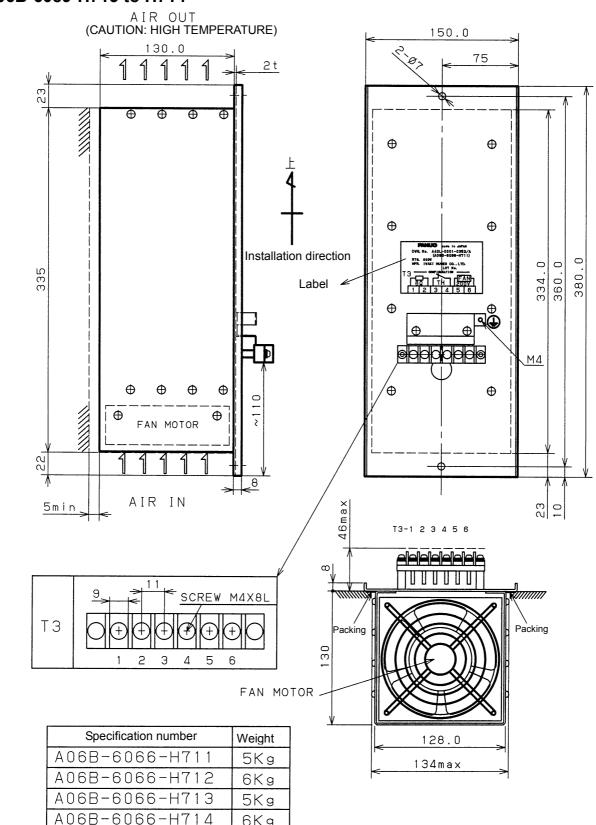

9.1.4 Power Transformer for Export



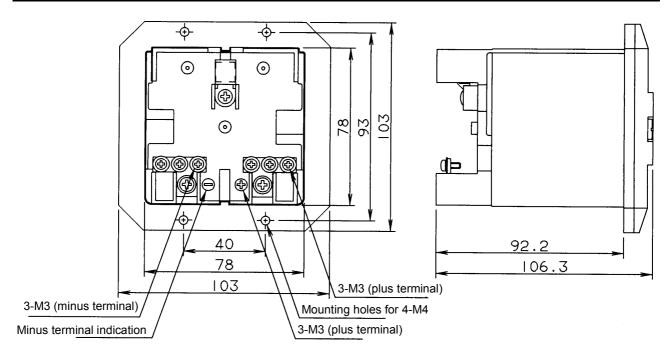

Specification	A80L-0022-0005	A80L-0024-0006	A80L-0026-0003	A80L-0028-0001
Type (name)	SAE	SBE	SCE	SDE
Weight	21 kg	27 kg	36 kg	42 kg
hl* (height of trans)	Max. 217mm	Max. 217mm	Max. 247mm	Max. 247mm

9.1.5 Separated Regenerative Discharge Unit


A06B-6093-H401

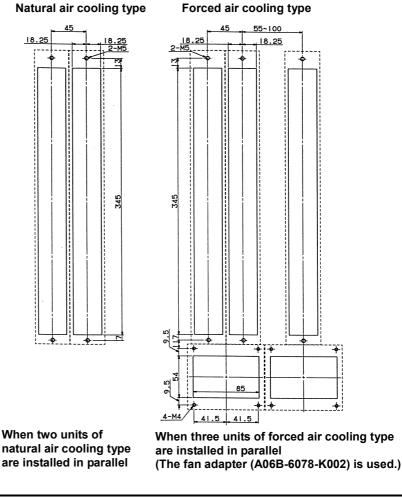


Weight : 0.5 kg


A06B-6089-H500

A06B-6089-H713 to H714

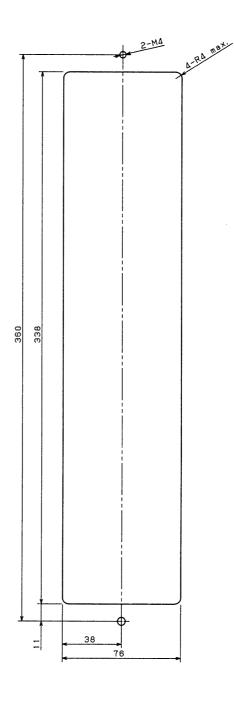
6Kg


9.1.6 Battery Case

9.2 Panel Cut-out Drawings

9.2.1 SVU40, SVU-80

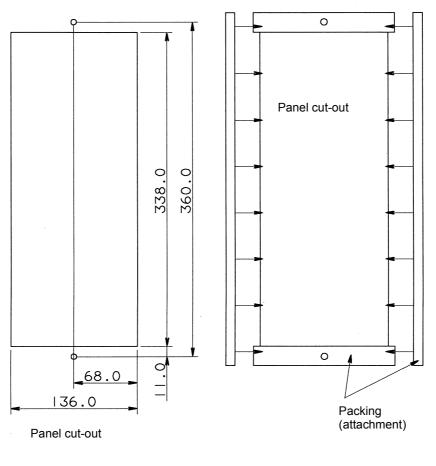
The descriptions of this subsection apply to all of the FSSB interface, I/O Link interface, and PWM interface.



NOTE

- 1 The width of the module (A06B-6078-K002) is 100mm. If two modules are used, the distance between modules is 100mm or more.
- 2 Attach packings (acrylonitrile-butadiene rubber, or soft NBR) to prevent the ingress of oil and dust.
- 3 Reinforce the right and left and of each panel cut-out in the power magnetics cabinet, for example with L-angle steel, to ensure reliable contact with the amplifier modules.
- 4 When installing a battery (by connection method 2), provide a space of 40 mm horizontally as a maintenance area for battery replacement. See Section 9.3.

9.2.2 Separated Regenerative Discharge Unit

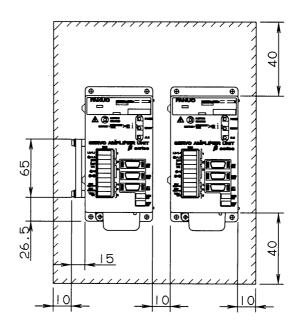

A06B-6089-H500

PANEL CUT-OUT

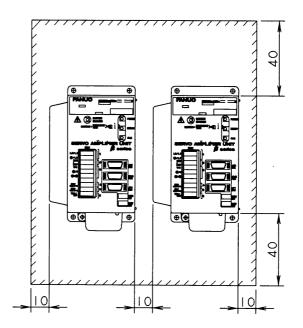
CAUTION Attach packings (acrylonitrile-butadiene rubber, or soft NBR) to prevent the ingress of oil and dust.

A06B-6089-H713 to H714

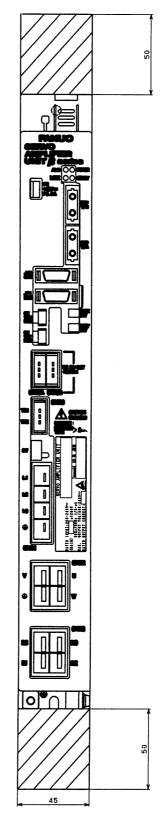
CAUTION Attach packings (acrylonitrile-butadiene rubber, or soft NBR) to prevent the ingress of oil and dust.

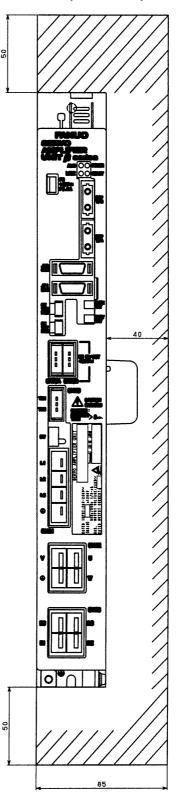

9.3 MAINTENANCE AREA

SVU-4, SVU-12, SVU-20



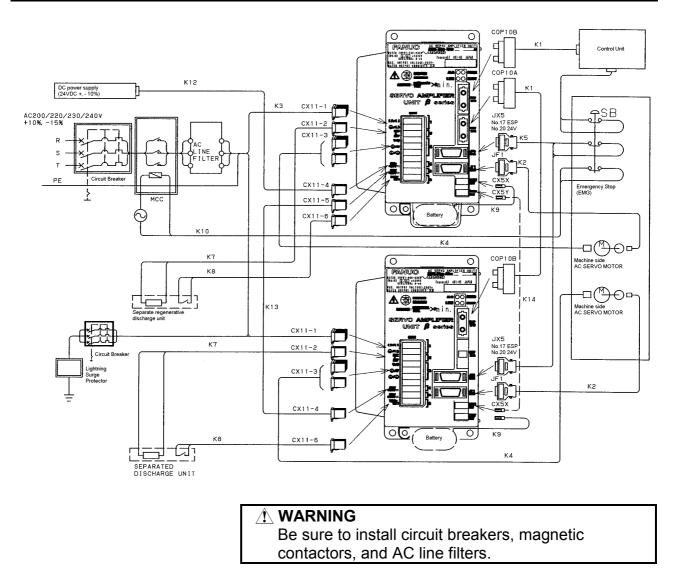
The descriptions of this section apply to all of the FSSB interface, I/O Link interface, and PWM interface.


(a) SVU-12

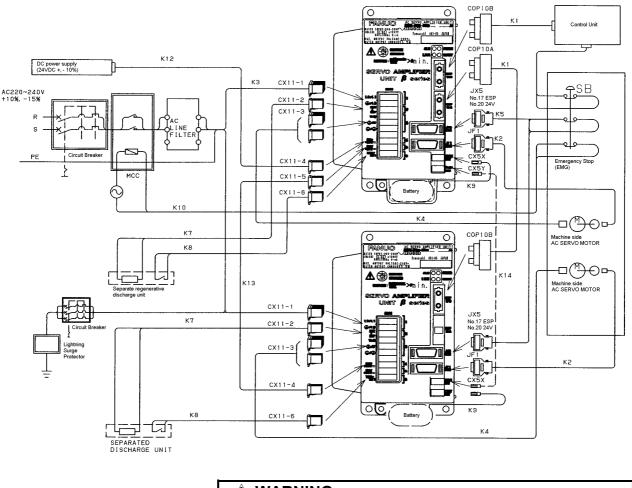

(b) SVU-20

SVU-40, SVU-80 (when the battery(A06B-6093-K001) is not used)

SVU-40, SVU-80 (when the battery(A06B-6093-K001) is used)

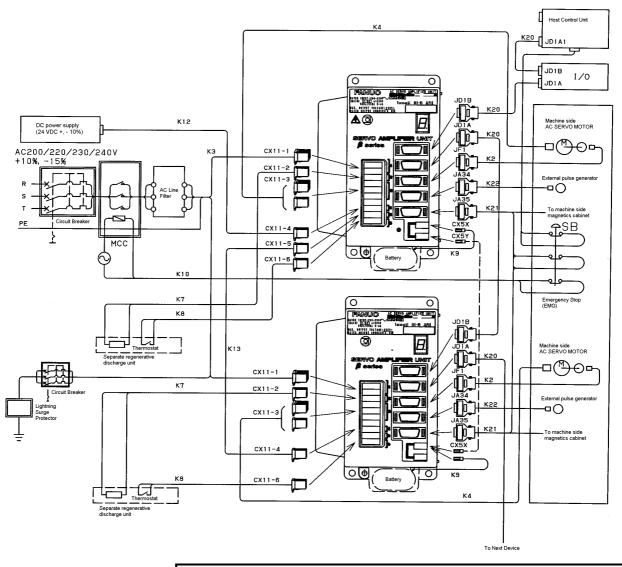


V. CONNECTION


TOTAL CONNECTION DIAGRAM

1.1 FSSB INTERFACE (SVU4, SVU-12, SVU-20)

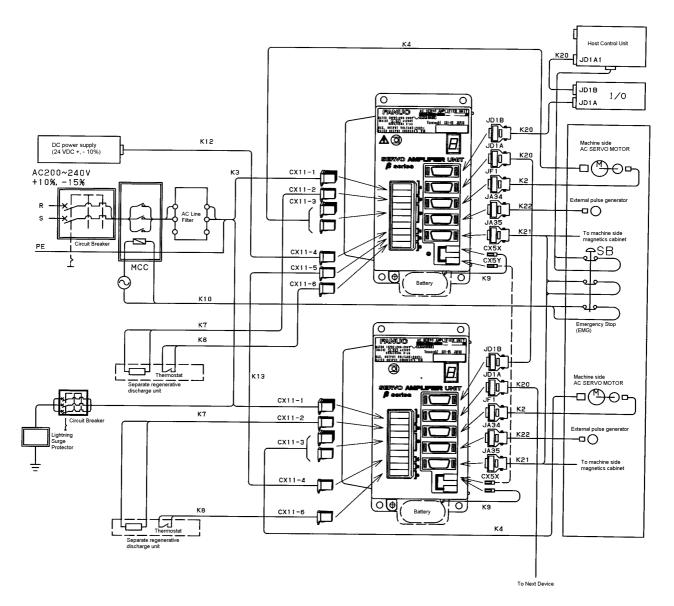
1.1.1 Three-phase Input


1.1.2 Single-phase Input (SVU4, SVU-12, SVU-20)

Be sure to install circuit breakers, magnetic contactors, and AC line filters.

1.2 I/O Link INTERFACE (SVU4, SVU-12, SVU-20)

1.2.1 Three-phase Input

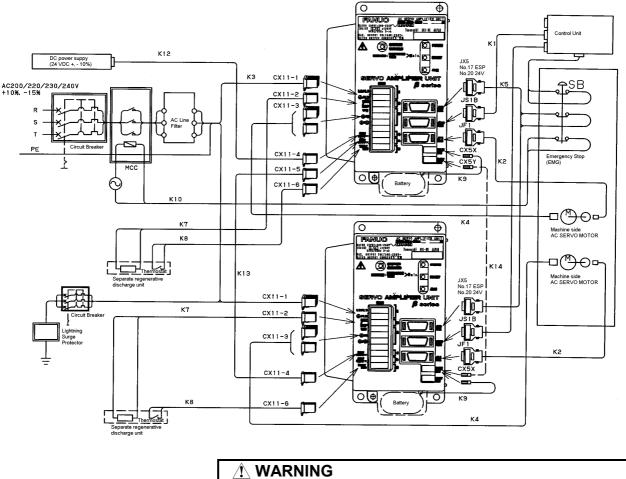


Be sure to install circuit breakers, magnetic contactors, and AC line filters.

NOTE

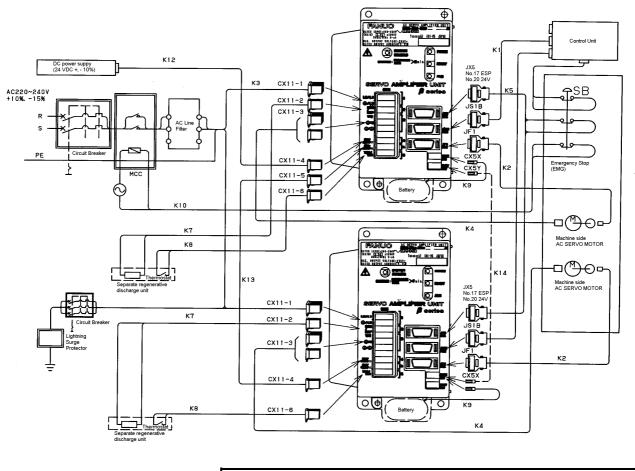
As shown above, make a configuration so that the external magnetic contactor inserted into the power input of the β series servo motor amplifier (with the I/O Link option) is turned on immediately upon emergency stop cancellation. The period of time allowed until the external magnetic contactor is turned on after emergency stop cancellation is 100 ms.

1.2.2 Single-phase Input (SVU4, SVU-12, SVU-20)


Be sure to install circuit breakers, magnetic contactors, and AC line filters.

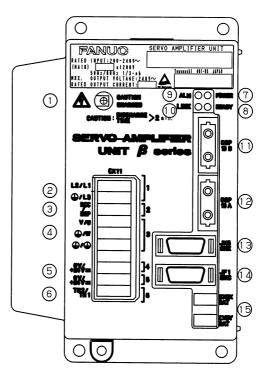
NOTE

As shown above, make a configuration so that the external magnetic contactor inserted into the power input of the β series servo motor amplifier (with the I/O Link option) is turned on immediately upon emergency stop cancellation. The period of time allowed until the external magnetic contactor is turned on after emergency stop cancellation is 100 ms.


1.3 PWM INTERFACE (SVU4, SVU-12, SVU-20)

1.3.1 Three-phase Input

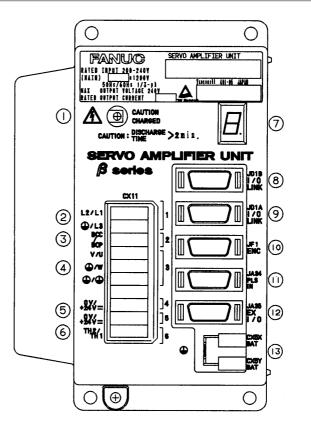
Be sure to install circuit breakers, magnetic contactors, and AC line filters.


1.3.2 Single-phase Input (SVU4, SVU-12, SVU-20)

▲ WARNING Be sure to install circuit breakers, magnetic contactors, and AC line filters.

2 CONNECTOR LOCATIONS FOR $\boldsymbol{\beta}$ **SERIES AMPLIFIER**

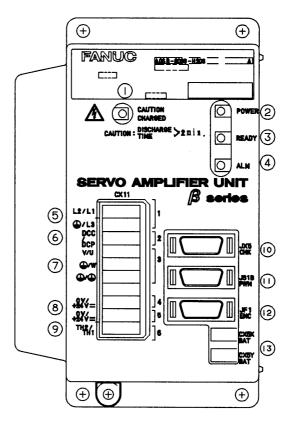
2.1 FSSB INTERFACE (SVU4, SVU-12, SVU-20)



	Name	Description	Remarks
<1>		DC link charge indicator LED	(Warning 1)
<2>	CX11-1	Main power input connector	
<3>	CX11-2	Connector for regenerative resistor (DC link)	
<4>	CX11-3	Motor power line connector	
<5>	CX11-4,5	24V power input/output connector	
<6>	CX11-6	Connector for regenerative resistor (for overheat)	(Warning 2)
<7>	POWER	Control power status indicator LED	
<8>	READY	Activation status indicator LED	
<9>	ALM	Alarm status indicator LED	
<10>	LINK	FSSB communication status indicator LED	
<11>	COP10B	FSSB communication input connector	
<12>	COP10A	FSSB communication output connector	
<13>	JX5	Connector for the ESP signal and signal checking	
<14>	JF1	Connector for PULSECODER	
<15>	CX5X,CX5Y	Connector for ABS Pulsecoder battery	

- 1 It is dangerous to touch any cables and components inside the module while this LED is lit. Never touch components or cables while this LED is lit.
- 2 Refer to Section 4.7 for details.

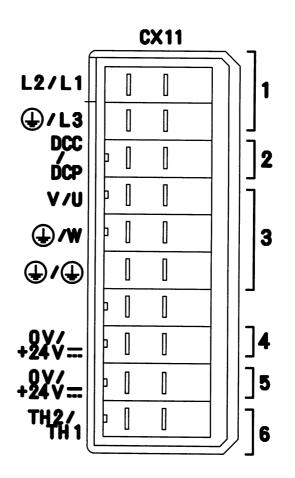
2.2 I/O Link INTERFACE (SVU4, SVU-12, SVU-20)



	Name	Description	Remarks
<1>		DC link charge indicator LED	(Warning 1)
<2>	CX11-1	Main power input connector	
<3>	CX11-2	Connector for regenerative resistor (DC link)	
<4>	CX11-3	Motor power line connector	
<5>	CX11-4,5	24V power input/output connector	Both connectors have the same function.
<6>	CX11-6	Connector for regenerative resistor (for overheat)	(Warning 2)
<7>		Status indicator LED	
<8>	JD1B/I/O LINK	FANUC I/O Link connector	From a unit at the previous stage
<9>	JD1A/I/O LINK	FANUC I/O Link connector	To a unit at the next stage
<10>	JF1/ENC	Connector for Pulsecoder connection	
<11>	JA34/Pulse In	External pulse input connector	
<12>	JA35/EX I/O	Built-in DI connector	
<13>	CX5X,CX5Y	Connector for ABS Pulsecoder battery	Both connectors have the same function.

- It is dangerous to touch any cables and components inside the module while this 1 LED is lit. Never touch components or cables while this LED is lit.
- Refer to Section 4.7 for details. 2

2.3 PWM INTERFACE (SVU4, SVU-12, SVU-20)


	Name	Description	Remarks
<1>		DC link charge indicator LED	(Warning 1)
<2>	POWER	Control power status indicator LED	
<3>	READY	Activation status indicator LED	
<4>	ALM	Alarm status indicator LED	
<5>	CX11-1	Main power input connector	
<6>	CX11-2	Connector for regenerative resistor (DC link)	
<7>	CX11-3	Motor power line connector	
<8>	CX11-4,5	24V power input/output connector	Both connectors have the same function.
<9>	CX11-6	Connector for regenerative resistor (for overheat)	(Warning 2)
<10>	JX5/CHK	ESP connector & Signal check connector	For the servo check pin board
<11>	JS1B/PWM	NC interface connector Type B interface	
<12>	JF1/ENC	Connector for Pulsecoder connection	
<13>	CX5X,CX5Y	Connector for ABS Pulsecoder battery	

- 1 It is dangerous to touch any cables and components inside the module while this LED is lit. Never touch components or cables while this LED is lit.
- 2 Refer to Section 4.7 for details.

2.4 PIN ASSIGNMENT OF CONNECTOR CX11 (SVU4, SVU-12, SVU-20)

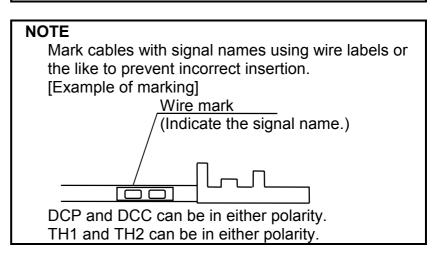
The following tables list the pin assignment of connectors CX11-1 to CX11-6.

Silk CX11	Signal	Housing pin No.	Signal	Housing pin No.	Connector kit A06B-6093-K305 Model number of housing	Specification	
-1	L2	A1	L1	B1	475000.0	3¢ 200VAC input	
		A2	L3	B2	175363-3	1¢ 220VAC input	
-2	DCC	А	DCP	В	(Caution) 1318182-2	Regenerative resistor	
	V	A1	U	B1			
-3		A2	W	B2	1318095-2	Motor output	
-5			В3	1318093-2	Connected when $\alpha 1$ or $\alpha 2$ is used		
-4	0V	А	+24V	В	175362-1	Input of 24 VDC control power	
-5	0V	А	+24V	В	175362-1	Input of 24 VDC control power	
-6	TH2	А	TH1	В	A660-8011-T604	Thermostat for regenerative resistor	

Housing manufacturer : tyco Electronics AMP

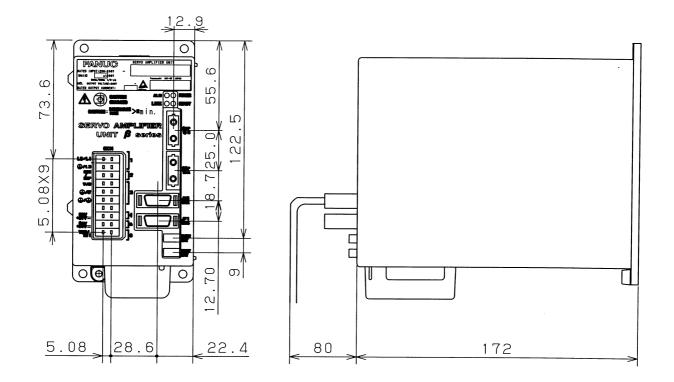
When no regenerative discharge resistor is used, it is recommended to install a dummy housing (1318182-2) for preventing wrong insertion. Do not make a connection between the pins (A and B) of CX11-2. Otherwise, the amplifier can be damaged. For details, see Section 4.6.

B-65232EN/03

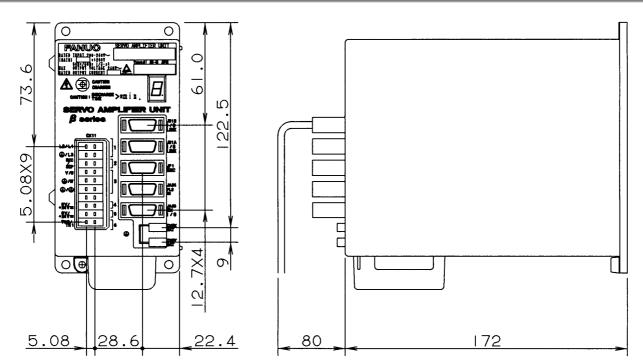

Silk CX11	Signal	Housing pin No.	Signal	Housing pin No.	Improved connector kit A06B-6093-K306 Model number of housing	Specification
-1	L2	A1	L1	B1	475000.0	3ø 200VAC input
		A2	L3	B2	175363-3	1¢ 220VAC input
-2	DCC	А	DCP	В		(Caution) Regenerative resistor
	V	A1	U	B1	1318095-2	Motor output
-3		A2	W	B2		
-5	\oplus	A3	⊕	В3		Connected when $\alpha 1$ or $\alpha 2$ is used
-4	0V	А	+24V	В	175362-1	Input of 24 VDC control power
-5	0V	А	+24V	В	175362-1	Input of 24 VDC control power
-6	TH2	A	TH1	В		(Caution) Thermostat for regenerative resistor

2.4.2 When a Regenerative Resistor Is Used

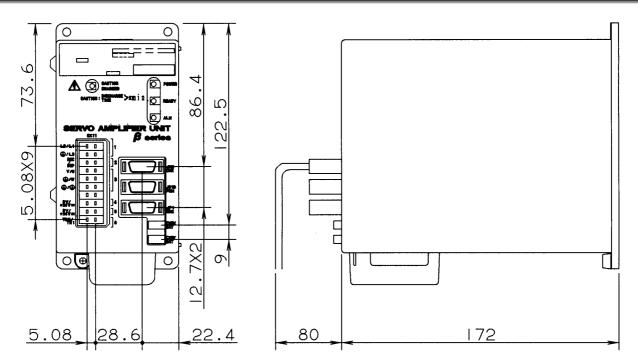
Housing manufacturer : tyco Electronics AMP



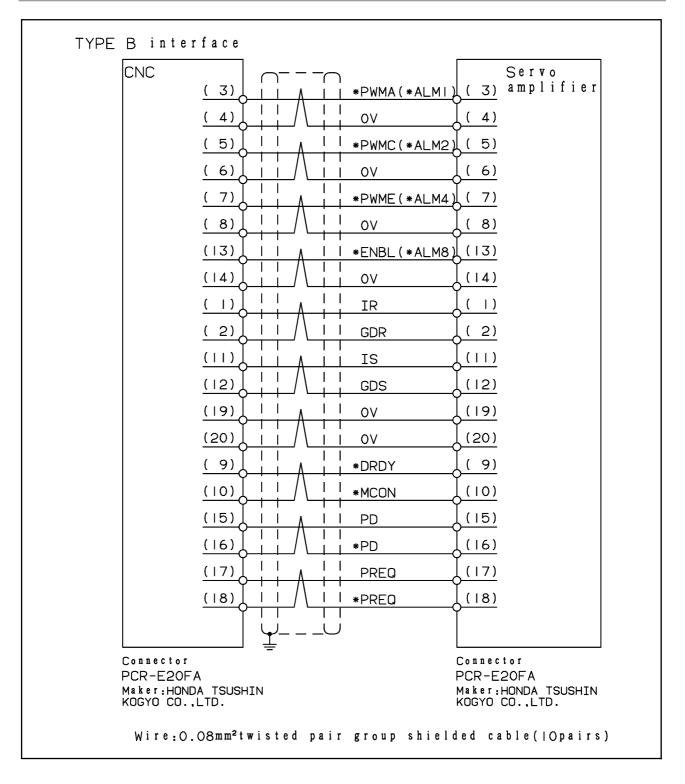
Connect the regenerative resistor cables (resistor line and alarm signal line). If a wrong connection is made, the amplifier can be damaged. Refer to Section 4.7 for details.



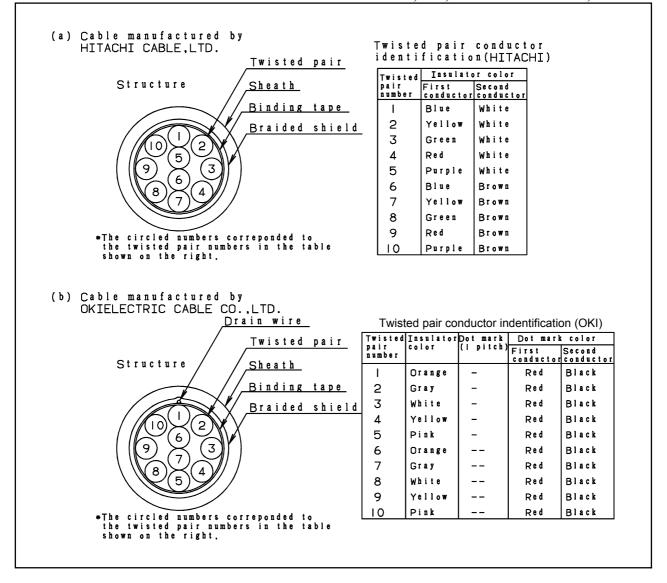
3.1 FSSB INTERFACE (SVU-4, SVU-12, SVU-20)



B-65232EN/03



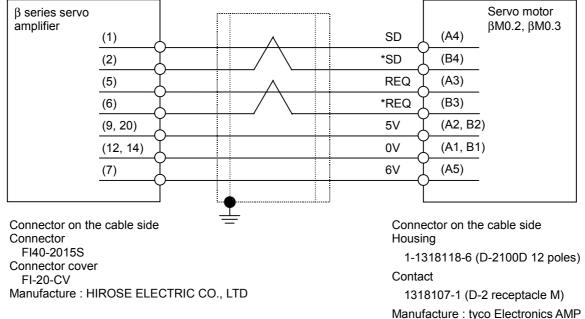
3.3 PWM INTERFACE (SVU-4, SVU-12, SVU-20)


4.1 K1 CABLE CONNECTION (ONLY FOR PWM INTERFACE)

Reference

- Wire for K1 cable

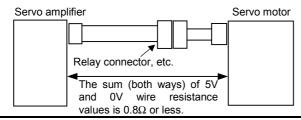
The following wire is recommended for the K1 cable: FANUC specification : A66L-0001-0284/10P Name : 10-pair cable Wire : #28AWG 10 pairs (20 conductors), standard length 200 m Manufacturer : Hitachi Cable, Ltd., Oki Electric Cable Co., Ltd.

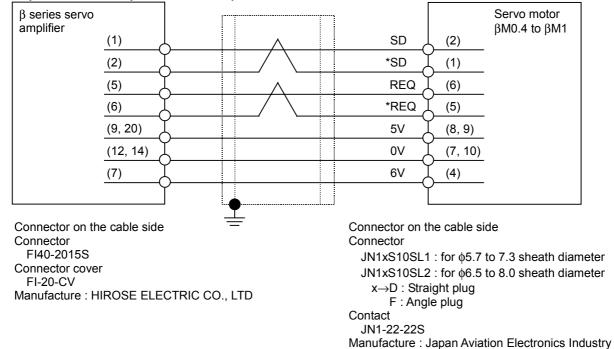

- 1 For the pairs (1-2, 11-12) used for the current feedback signals (IR, IS), use the central pairs of the cable to minimize the effect of external influences. (For IR and IS, use pairs 5 and 6 when using the Hitachi cable. Use pairs 6 and 7 when using the Oki cable.) The use of other cables may cause uneven feed or abnormal noise.
- 2 These cables feature group shielding. Connect the shielding to ground on the NC side.

Specifications

Specific	Item	Unit	Specifications	
Specifications			A66L-0001-0284/10P	
·			Hitachi Cable, Ltd.	
Manufactur	er		Oki Electric Cable Co., Ltd.	
			60°C 30V : UL2789	
Rating			80°C 30V : UL80276	
	Conductor		Tinned soft steel wire (ASIM B-286)	
	Insulator		Cross-linked vinyl	
Material	Braided shield		Tinned soft steel wire	
	Sheath		Heat-resistant, oil-resistant vinyl	
Number of	pairs	Pair	10	
	Size	AWG	28	
Conductor	Structure	Conductors/mm	7/0.127	
	Outside diameter	mm	0.38	
			0.1	
	Thickness	mm	Minimum thickness: 0.38 (3.1 mils)	
Insulator	Outside diameter			
	(approximate value)	mm	0.58	
	Core style (rating)		UL1571(80°C 30V)	
	Outside diameter			
Twisted	(approximate value)	mm	1.16	
pair	Twisting pitch	mm	20 or less	
			A required number of twisted pairs are bundled using binding	
Twisted pai	r binding		tape. To form a round cable, an interstitial wire can be used as	
-	-		required.	
Outside dia	meter of bundled twisted			
pairs		mm	3.5	
Drain wire		Wiroo/mm	Hitachi Cable, Ltd.: No drain wire is provided.	
Drain wire		Wires/mm	Oki Electric Cable Co., Ltd.: A drain wire is provided. 10/0.12	
Braided	Strand diameter	mm	0.12	
shield	Braiding density	%	85 or more	
	Color		Black	
Sheath	Thickness	mm	1.0	
Sheath	Outside diameter	mm	6.2	
	(approximate value)	mm	0.2	
Standard le	ngth	m	200	
Packing			Bundle	
	Electric resistance	Ω/km	233 or less	
	(20_C)	\$2/NIII		
Electrical	Insulation resistance	MΩ-km	10 or less	
characterist	tics (20_C)	10122-1111		
	Dielectric strength	V/min.	300	
(A.C.)		v/111111.		
Flame resis	tance		The UL standard flame resistance test (VW-ISC) must be	
	Flame resistance		satisfied.	

4.2 K2 CABLE CONNECTION

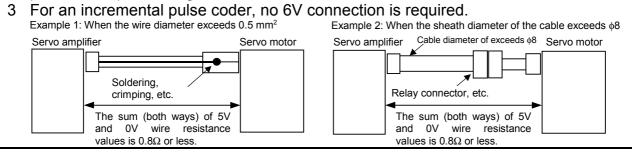

For β M0.2/4000, β M0.3/4000



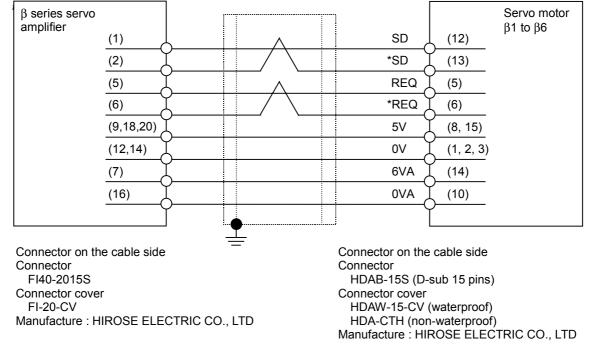
The specifications of a recommended wire are indicated below.

Cable length	20m or lower
5V, 0V 0.5 mm ² (AWG21) \times 2 (strand structure 20/0.18, coating outer diameter ϕ 0.88 t	
6V	0.5 mm ² (AWG21) (strand structure 20/0.18, coating outer diameter ϕ 0.88 to ϕ 1.5)
	0.18 mm ² (AWG25) or more. Twisted pair wire
SD, *SD, REQ, *REQ	(strand structure 7/0.18, coating outer diameter ϕ 0.88 to ϕ 1.5)
	$0.5 \text{ mm}^2 \times 5 + 0.18 \text{ mm}^2 \times 2 \text{ pairs}$
Recommended wire	Hitachi Cable, Ltd. UL20276-SB(0) 5X21AWG+2PX25AWG
	(A66L-0001-0461) (For a fixed cable)

- 1 When the user prepares a cable, the user needs to ensure that the sum (both ways) of 5V and 0V wire resistance values is 0.8Ω or less.
- 2 The maximum applicable wire diameter for the motor-side cable connector is 0.5 mm² (when the crimping tool (1463475-1) is used) or 0.85 mm² (when the crimping tool (1276654-1) is used). When a thicker wire or cable needs to be used, make a relay connection as shown below. Example: When a maximum applicable wire diameter is exceeded

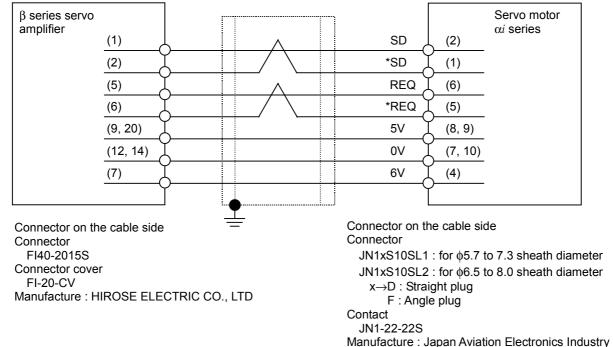


For βM0.4/4000, βM0.5/4000, βM1/4000


The specifications of a recommended wire are indicated below.

Cable length	20m or more		
5V, 0V 0.5 mm ² (AWG21) \times 2 (strand structure 20/0.18, coating outer diameter ϕ 1.5 o			
6V	0.5 mm ² (AWG21) (strand structure 20/0.18, coating outer diameter ϕ 1.5 or lower)		
	0.18 mm ² (AWG25) or more. Twisted pair wire		
SD, *SD, REQ, *REQ	(strand structure 7/0.18, coating outer diameter ϕ 1.5 or lower)		
	$0.5 \text{ mm}^2 \times 5 + 0.18 \text{ mm}^2 \times 2 \text{ pairs}$		
Recommended wire	Hitachi Cable, Ltd. UL20276-SB(0) 5X21AWG+2PX25AWG		
	(A66L-0001-0461) (For a fixed cable)		

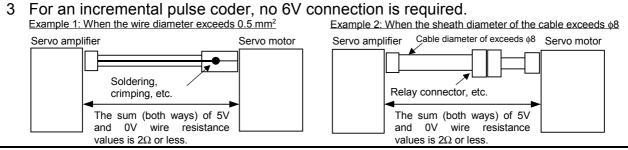
- 1 When the user prepares a cable, the user needs to ensure that the sum (both ways) of 5V and 0V wire resistance values is 0.8Ω or less.
- 2 The maximum applicable wire diameter for the motor-side cable connector is 0.5 mm^2 (strand structure 20/0.18 or 104/0.08, coating outer diameter ϕ 1.5 or less), and the sheath diameter is ϕ 5.7 to ϕ 8.0. When a thicker wire or cable needs to be used, perform the processing shown below.


For $\beta 1/3000$ to $\beta 6/2000$

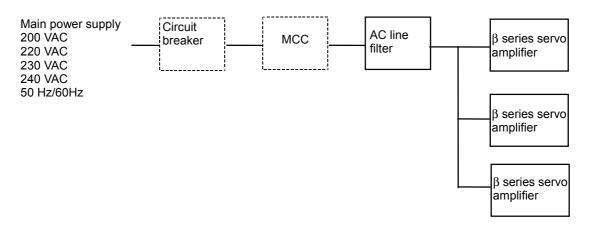
The specifications of a recommended wire are indicated below.

Cable length	14m or lower
5V, 0V	$0.5 \text{ mm}^2 \times 2$
6VA, 0VA	0.5 mm ²
SD, *SD, REQ, *REQ	0.18 mm ² (AWG25) or more. Twisted pair wire

- 1 When the user prepares a cable, the user needs to ensure that the sum (both ways) of 5V and 0V wire resistance values is 0.5Ω or less.
- 2 For an incremental pulse coder, no 6VA and 0VA connections are required.



For αi series servo motor


The specifications of a recommended wire are indicated below.

Cable length	50m or lower		
5V, 0V	0.5 mm ² (AWG21) \times 2 (strand structure 20/0.18, coating outer diameter ϕ 1.5 or lower)		
$6V$ 0.5 mm ² (AWG21) (strand structure 20/0.18, coating outer diameter ϕ 1.5 or lower)			
	0.18 mm ² (AWG25) or more. Twisted pair wire		
SD, *SD, REQ, *REQ	(strand structure 7/0.18, coating outer diameter		
	$0.5 \text{ mm}^2 \times 5 + 0.18 \text{ mm}^2 \times 2 \text{ pairs}$		
Recommended wire	Hitachi Cable, Ltd. UL20276-SB(0) 5X21AWG+2PX25AWG		
	(A66L-0001-0461) (For a fixed cable)		

- 1 When the user prepares a cable, the user needs to ensure that the sum (both ways) of 5V and 0V wire resistance values is 2Ω or less.
- 2 The maximum applicable wire diameter for the motor-side cable connector is 0.5 mm^2 (strand structure 20/0.18 or 104/0.08, coating outer diameter ϕ 1.5 or less), and the sheath diameter is ϕ 5.7 to ϕ 8.0. When a thicker wire or cable needs to be used, perform the processing shown below.

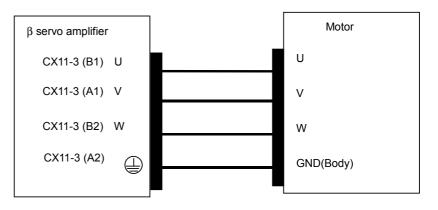
4.3 K3 CABLE CONNECTION

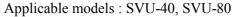
Housing : 175363-3 Contact : 1-175218-2 Manufacturer : tyco Electronics AMP

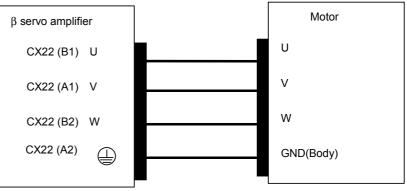
	Applicable cable			
Model	Cabtyre cable (Warning 1)	Heat-resistant vinyl cable (Warning 2)		
SVU-12	0.5mm ² or more	0.5mm ² or more		
SVU-20	1.0mm ² or more	1.0mm ² or more		

1 600V vinyl cabtyre cable, JIS C 3312, 4 conductors
2 Heat-resistive vinyl cable
(maximum conductor temperature: 105°C)
(equivalent to the LMFC, manufactured by
FURUKAWA ELECTRIC CO., LTD.)

4.4 K4 CABLE CONNECTION


This section describes the servo motor/amplifier power cable in the following order:


- 1. Connector
- 2. Power cable selection (general)
- 3. Servo motor power cable


1. Connector

With the β series, the D-3000 or D-5000 series connector (manufactured by tyco Electronics AMP) is employed for power cable connection. For each model, the specifications of receptacle housings and receptacle contacts are provided below.

Applicable models : SVU-4, SVU-20

[Receptacle housing]

Receptacle housings with two key types are available. Use a receptacle housing with the key type suitable for the servo amplifier.

Model number of receptacle housing	Key specification	Applicable models	Remarks
1318095-2	Wrong insertion protection key	SVU-4, SVU-20	(*1)
1-917807-2	XX	SVU-40, SVU-80	

(*1) The key-less receptacle housings (175362-1, 175363-1) are also usable. However, the use of the receptacle housings with the specifications above is recommended.

[Receptacle contact]

Receptacle contacts are available for two wire diameter ranges of a cable. Use a receptacle contact suitable for the wire diameter of the cable used.

Applicable models : SVU-4, SVU-20

	I number of acle contact	Wire size (mm²)	Wire size AWG	Insulation coating outer diameter (mm)	Model number of manual tool
M size	1-175217-2	0.2- 0.5	24/22/20	1.2-2.6	91559-1
L size	1-175218-2	0.5- 1.25	20/18/16	1.8-2.8	91558-1

Applicable models : SVU-40, SVU-80

	I number of acle contact	Wire size (mm ²)	Wire size AWG	Insulation coating outer diameter (mm)	Model number of manual tool
S size	316040-2	1.23 – 2.27	16/14	3.0-3.8	0-234170-1
M size	316041-2	3.08 - 5.50	12/10	4.0-5.2	0-234171-1

[Connector and tool ordering information]

The connectors (housings, contacts) and tools can be purchased directly from tyco Electronics AMP. They are also available as options from FANUC as indicated below.

Specifications	Contents		
		Wrong insertion protection key 175363-3 (1pcs.)	
		Wrong insertion protection key 1318182-2 (1pcs.)	
	Housing	Wrong insertion protection key 1318095-2 (1pcs.)	
A06B-6093-		Key-less 175362-1 (2pcs.)	
K305		Dummy connector A660-8011-T604 (1pcs.)	
(When no		M size 1-175217-2 (4pcs.)	
regenerative	Contact	Applicable wire diameter: 0.2-0.5mm ² , AWG24/22/20	
resistor is used)		Applicable tool: 91559-1 (not included in the kit)	
		L size 1-175218-2 (10pcs.)	
	Contact	Applicable wire diameter: 0.5-1.25mm ² , AWG20/18/16	
		Applicable tool: 91558-1 (not included in the kit)	
		Wrong insertion protection key 175363-3 (1pcs.)	
	Housing	Wrong insertion protection key 1318095-2 (1pcs.)	
A06B-6093-		Key-less 175362-1 (2pcs.)	
K306		M size 1-175217-2 (4pcs.)	
(When a	Contact	Applicable wire diameter: 0.2-0.5mm ² , AWG24/22/20	
regenerative		Applicable tool: 91559-1 (not included in the kit)	
resistor is used)		L size 1-175218-2 (10pcs.)	
	Contact	Applicable wire diameter: 0.5-1.25mm ² , AWG20/18/16	
		Applicable tool: 91558-1 (not included in the kit)	

Applicable models : SVU-4, SVU-20

Applicable models : SVU-40, SVU-80

Specifications	Contents
	Housing: XX key 1-917807-2 (1pcs.)
A06B-6093-K312	Contact: S size 316040-2 (4pcs.)
AU0D-0093-N312	Applicable wire diameter: 1.23-2.27mm ² , AWG16/14
	Applicable tool: 0-234170-1 (not included in the kit)
	Housing: XX key 1-917807-2 (1pcs.)
A06B-6093-K313	Contact: M size 316041-2 (4pcs.)
	Applicable wire diameter: 3.08-5.50mm ² , AWG12/10
	Applicable tool: 0-234171-1(not included in the kit)

Crimping tool

Specifications	Contents
	Applicable tool: 0-234170-1
A06B-6110-K220#D5S	Contact: S size 316040-2
	Applicable wire diameter: 1.23-2.27mm ² , AWG16/14
	Tool: 0-234171-1
A06B-6110-K220#D5M	Contact: M size 316041-2
	Applicable wire diameter: 3.08-5.50mm ² , AWG12/10
A06B-6110-K220#D5R	Extractor: 409158-1

2. Power cable selection (general)

When selecting cable specifications, consider the following use conditions:

- <1> Motor rated current or actual current on the machine
- <2> Power cable type (heat resistance, etc)
- <3> Cable installation environment (ambient temperature, etc.)
- <4> Requirement for waterproofness (Pay attention to the matching diameter with a cable clamp)
- <5> Compliance with CE marking (compliance with various safety standards and EMC standard)

Examples of heavy-duty power cord selection are provided below. Before applying an example of selection to an actual case, the user needs to carefully check the use conditions. Note that data such as power line diameter information is calculated based on JCS No. 168 D (1980) "Allowable Current of Power Cable (No. 1)".

[Examples of power cable selection (reference information)] [Selection example 1]

Heavy-duty power cord specifications

Maximum allowable conductor temperature: 60°C

Ambient temperature: 30°C

Cable wire diameter [mm ²]	Allowable current value [Arms]	Model number of receptacle contact
0.75	Up to 11	L size 1-175218-2
1.25	Up to 15	L size 1-175218-2 S size 316040-2
2	Up to 19	S size 316040-2
3.5	Up to 27	M size 316041-2
5.5	Up to 35	M size 316041-2

[Selection example 2]

Heavy-duty power cord specifications:

Maximum allowable conductor temperature: 80°C

Ambient temperature: 55°C

Cable wire diameter	Allowable current value	Model number of
[mm ²]	[Arms]	receptacle contact
0.75	Up to 9.2	L size 1-175218-2
1.05	Lin to 10.7	L size 1-175218-2
1.25	Up to 12.7	S size 316040-2
2	Up to 16.3	S size 316040-2
3.5	Up to 23.4	M size 316041-2
5.5	Up to 31.2	M size 316041-2

3. Servo motor power cable

A servo motor power cable consists of the following components:

- <1> Power cable
- <2> Amplifier-side connector
- <3> Motor-side connector
- <1> Power cable

Based on "2. Power cable selection (general)" above, an example of combinations of servo motors with power cables is described below.

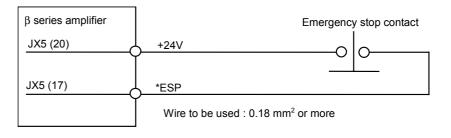
[Example of combinations of servo motors with power cables (reference information)]

Servo motor	Continuous rated current [Arms]	[Selection example 1] Cable wire	[Selection example 2] Cable wire
	(reference value)	diameter [mm ²]	diameter [mm ²]
α1/5000 <i>i</i>	2.7	0.75	0.75
α M2/5000 <i>i</i>	3.3	0.75	0.75
α2/5000 <i>i</i>	3.5	0.75	0.75
αC4/3000 <i>i</i>	4.1	0.75	0.75
αM3/5000 <i>i</i>	4.6	0.75	0.75
α C 8/2000 <i>i</i>	5.6	0.75	0.75
αC12/2000 <i>i</i>	6.5	0.75	0.75
α 4/4000 <i>i</i>	7.7	0.75	0.75
α8/3000 <i>i</i>	8.4	0.75	0.75
α M 8/4000 <i>i</i>	11.1	0.75	1.25
αC22/2000 <i>i</i>	12.3	1.25	1.25
αM12/4000 <i>i</i>	13.4	1.25	2
αC30/1500 <i>i</i>	14.2	1.25	2
α 12/3000 <i>i</i>	18.1	2	3.5
α22/3000 <i>i</i>	18.4	2	3.5
βM0.2/4000	0.9	0.75	0.75
βM0.3/4000	0.9	0.75	0.75
βM0.4/4000	3.5	0.75	0.75
βM0.5/4000	3.0	0.75	0.75
βM1/4000	2.7	0.75	0.75

<2> Amplifier-side connector

Select a connector according to "1. Connector" above.

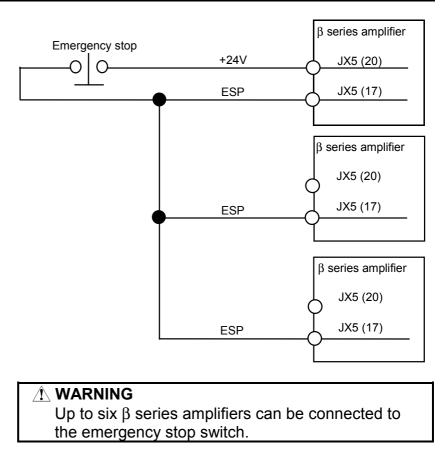
<3> Motor-side connector


The specifications of a motor-side connector depend on the motor model.

For details of motor-side connectors for the β series servo motors and βM series servo motors, see Chapter 9, "CONNECTOR", in Part I of this manual.

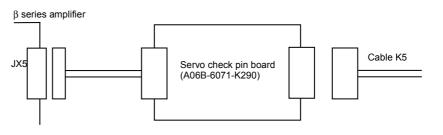
For details of motor-side connectors for the αi series servo motors, refer to "FANUC AC SERVO MOTOR αi series DESCRIPTIONS (B-65262EN)".

4.5 K5 CABLE CONNECTION

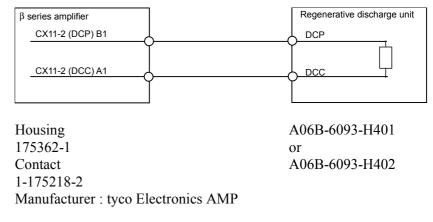

4.5.1 FOR FSSB Interface or PWM Interface

Housing	: PCR-V20LA
Connector	: PCR-E20FA
Manufacturer	: Honda Tsushin Kogyo

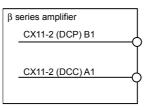
NOTE
When the contact is on (closed), the servo motor is
ready for operation. When the contact is off (open),
the external magnetic contactor (MCC) is off,
disabling the servo motor.
If the contact is turned off (open) during motor
rotation, the servo motor stops with a dynamic
brake.
Contact input signals must satisfy the following
requirements:
The external contact is rated at 30VDC, 100mA or
higher.
The significant levels for no-contact inputs (if used)
are:
Low level (logic 0) = not higher than 2V
High level (logic 1) = not lower than 20V


4.5.2 ESP Signal Using More than One β Amplifier

4.5.3 ESP Signal in Using a Servo Check Pin Board


To use a servo check pin board (A06B-6071-K290), remove cable K5 from connector JX5 and attach the servo check pin board. The pin board has two connectors that are arranged back-to-back with their pins connected on a one-to-one basis. Attach the cable K5 to the remaining connector.

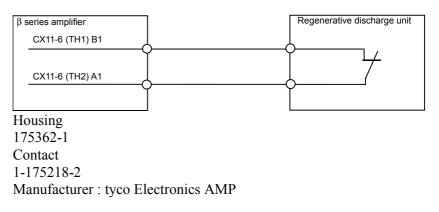
For details, refer to the maintenance manual (B-65235EN) for the β series amplifiers.



4.6 K7 CABLE CONNECTION

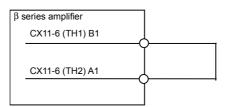
4.6.1 When Regenerative Discharge Unit is Used

4.6.2 When Regenerative Discharge Unit is not Used


Housing 1318182-2 Contact None Manufacturer : tyco Electronics AMP

 CAUTION
 Do not make a connection between the DCP pin and DCC pin.

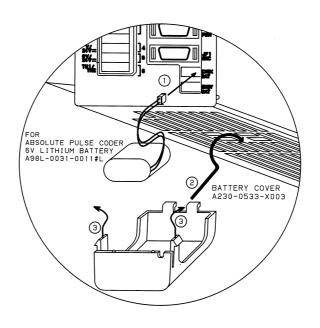
 It is recommended to protect against wrong insertion by inserting a housing (1313182-2).


4.7 K8 CABLE CONNECTION

4.7.1 When Regenerative Discharge Unit is Used

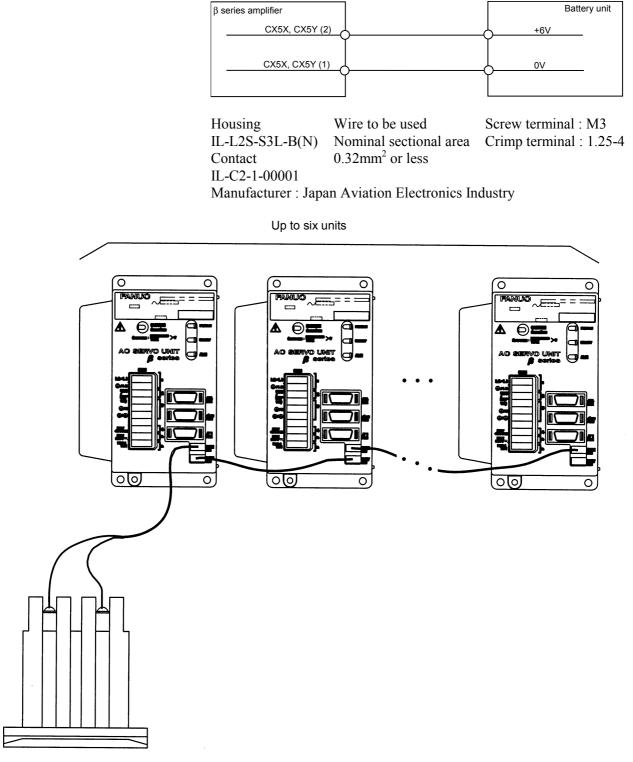
4.7.2 When Regenerative Discharge Unit is not Used

If no regenerative discharge unit is used, jumper the CX11-6 pins. The connector kit (A06B-6093-K301) comes with a standard dummy connector that jumpers the CX11-6 pins.



Housing 175362-1 Contact 1-175218-2 Manufacturer : tyco Electronics AMP

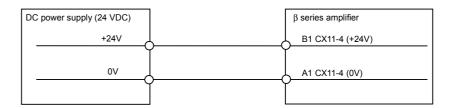
4.8 **K9 CABLE CONNECTION**


Connection method 1

The lithium battery has its own connecting cables. Mount the lithium battery in the amplifier, as shown below.

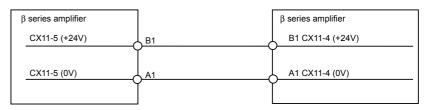
- 1. CONNECT 2. HOOK 3. CLAMP

Connection method 2



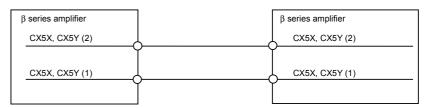
4.9 K10 CABLE CONNECTION

Use a wire that satisfies the specifications of the electromagnetic contactor.


Install a device such as a spark killer in order to suppress noise that can arise from an abrupt change in current when the circuit operates.

4.10 K12 CABLE CONNECTION

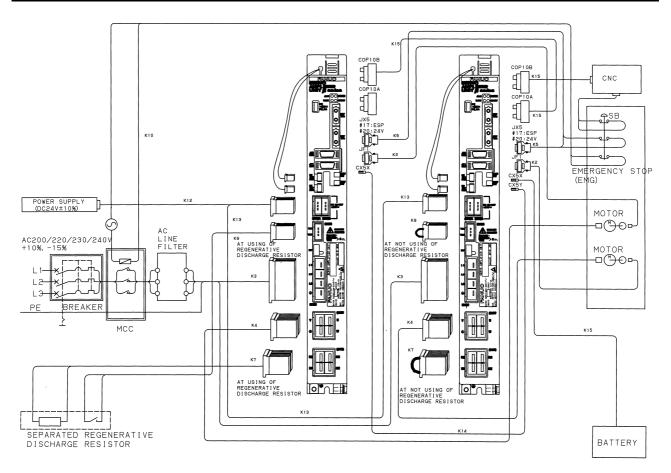
Wire to be used Nominal sectional area : 0.22 to 1.42 mm² or less Housing 175362-1 Contact 1-175217-2 (0.22 to 0.5mm²) 1-175218-2 (0.51 to 1.42mm²) Manufacturer : tyco Electronics AMP


4.11 K13 CABLE CONNECTION

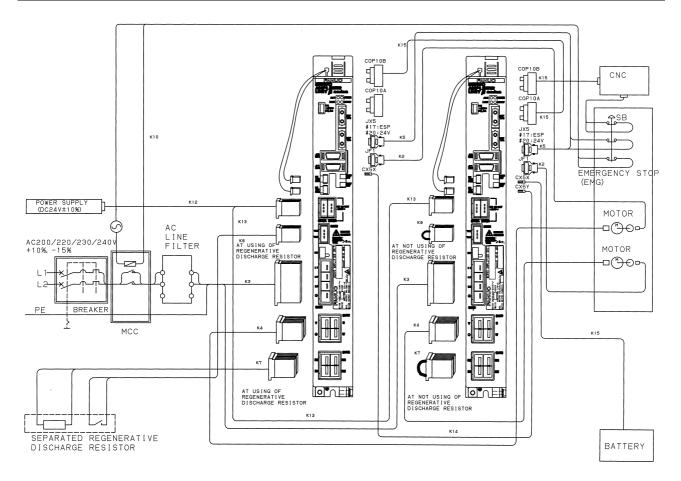
Wire to be used Nominal sectional area : 0.22 to 1.42 mm²

Housing 175362-1 Contact 1-175217-2 1-175218-2 Manufacturer : tyco Electronics AMP Housing 175362-1 Contact 1-175217-2 (0.22 to 0.5mm²) 1-175218-2 (0.51 to 1.42mm²) Manufacturer : tyco Electronics AMP

4.12 K14 CABLE CONNECTION

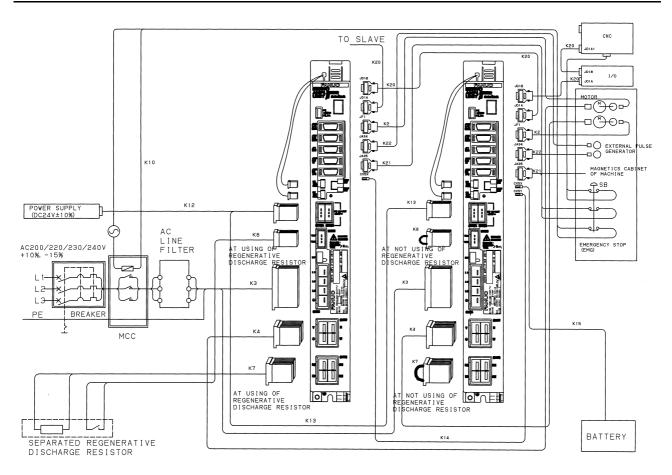

Wire to be used Nominal sectional area : 0.32 mm^2 or less

Housing IL-L2S-S3L-B(N) Contact IL-C2-1-00001 Manufacturer : Japan Aviation Electronics Industry Housing IL-L2S-S3L-B(N) Contact IL-C2-1-00001 Manufacturer : Japan Aviation Electronics Industry


5 TOTAL CONNECTION DIAGRAM

5.1 FSSB INTERFACE (SVU40, SVU-80)

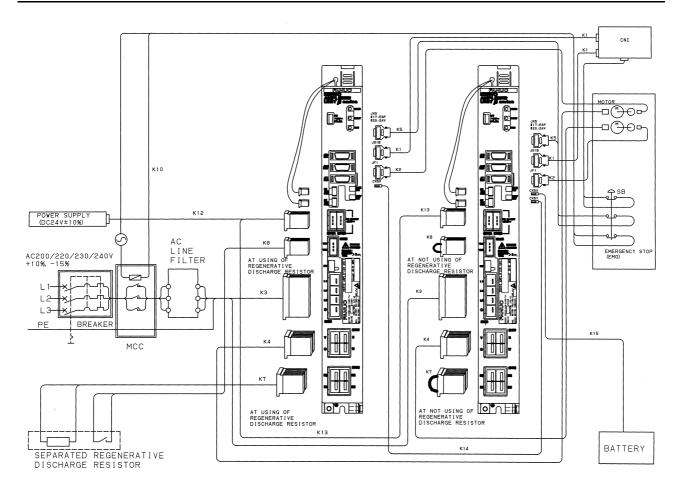
5.1.1 Three-phase Power Input

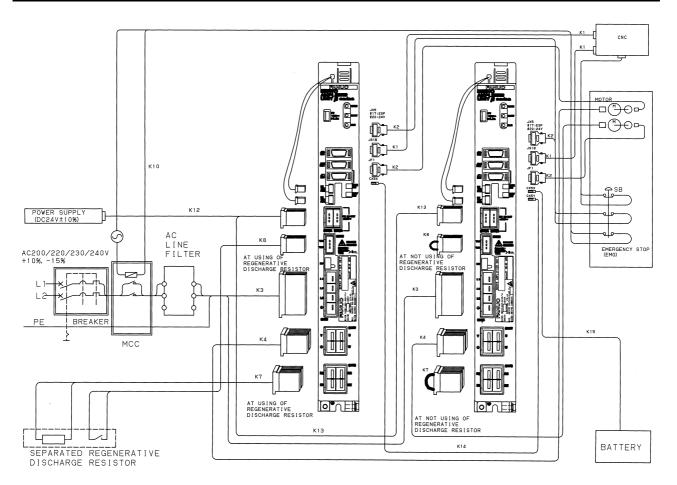

B-65232EN/03

5.1.2 Single-phase Power Input

5.2 I/O Link INTERFACE(SVU40, SVU-80)

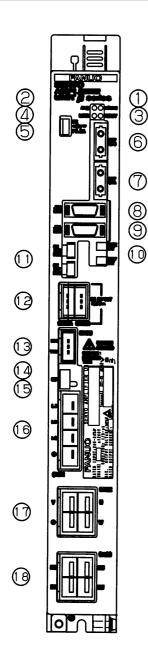
5.2.1 Three-phase Power Input




5.2.2 Single-phase Power Input

5.3 PWM INTERFACE (SVU40, SVU-80)

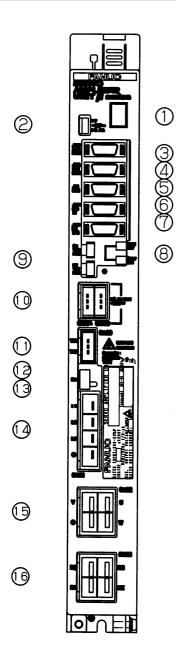
5.3.1 Three-phase Power Input



5.3.2 Single-phase Power Input

6.1 FSSB INTERFACE

	Name	Description	Remarks
<1>	POWER	Control power status indicator LED	
<2>	ALM	Alarm status indicator LED	
<3>	DRDY	Activation status indicator LED	
<4>	LINK	Communication status indicator LED	
<5>	FUSE	Fuse for 24V power supply	
<6>	COP10B	Connection for FSSB (to master)	
<7>	COP10A	Connection for FSSB (to slave)	
<8>	JX5/CHK	Connector for ESP and signal checking	
<9>	JF1/ENC	Connection for Pulsecoder	
<10>	CX5X/5Y	Battery connector for ABS Pulsecoder	For servo check pin board
<11>	CX18X/18Y	Connection for fan motor	
<12>	CX19A/19B	24V power input/output connector	
<13>	CX20	Connector for separated regenerative resistor (OH alarm)	(Note)
<14>		DC link charge indicator LED	(Warning)
<15>	sw	Switch for regeneration error detection circuit changeover	
<16>	CX21	Connector for primary power input	
<17>	CX22	Connector for motor power	
<18>	CX23	Connector for separated regenerative resistor (resistor line)	(Note)


It is dangerous to touch any cables and components inside the module while this LED is lit. Never touch components or cables while this LED is lit.

NOTE

Refer to Section 8.5 for details.

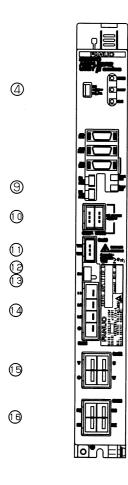
6.2

I/O Link INTERFACE (SVU-40, SVU-80)

	Name	Description	Remarks	
<1>	STATUS	Status indicator LED		
<2>	FUSE	Fuse for 24V power supply		
<3>	JD1B	Connector for I/O Link (to master)		
<4>	JD1A	Connector for I/O Link (to slave)		
<5>	JF1/ENC	Connector for Pulsecoder		
<6>	JA34/ Pulse In	Connector for external pulse input		
<7>	JA35/ EX I/O	Connector for built-in DI		
<8>	CX5X/5Y	Battery connector for ABS Pulsecoder	For servo check pin board	
<9>	CX18X/18Y	Connector for fan motor		
<10>	CX19A/19B	24V power input/output connector		
<11>	CX20	Connector for separated regenerative resistor (OH alarm)	(Note)	
<12>		DC link charge indicator LED	(Warning)	
<13>	sw	Switch for regeneration error detection circuit changeover		
<14>	CX21	Connector for primary power input		
<15>	CX22	Connector for motor power		
<16>	CX23	Connector for separated regenerative resistor (resistor line)	(Note)	

It is dangerous to touch any cables and components inside the module while this LED is lit. Never touch components or cables while this LED is lit.

NOTE


Refer to Section 8.5 for details.

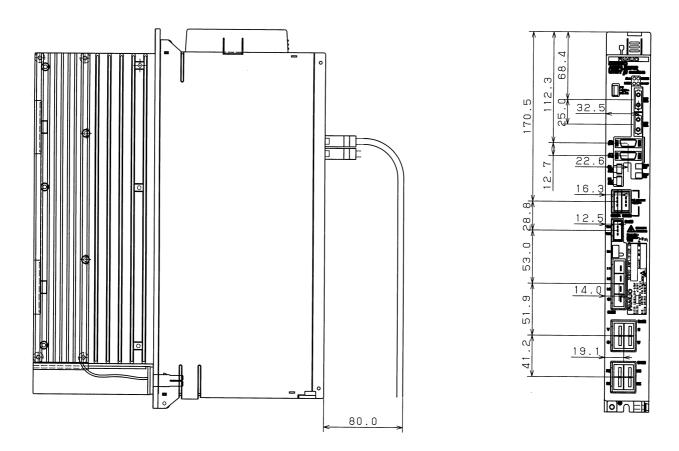
6.3

PWM INTERFACE (SVU-40, SVU-80)

9 0 0

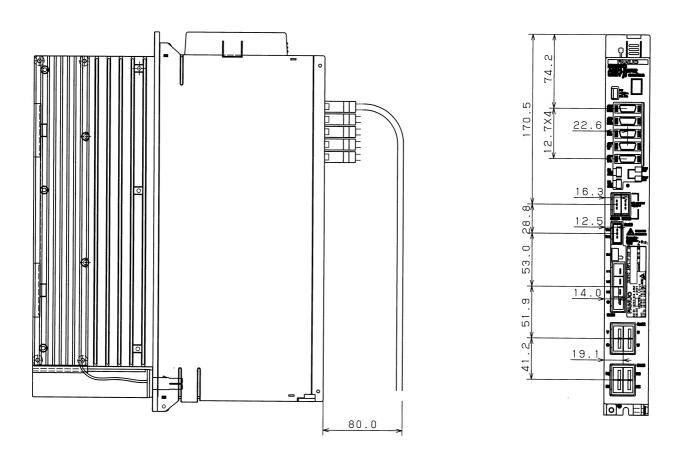
8

	Name	Description	Remarks
<1>	POWER	Control power status indicator LED	
<2>	DRDY	Activation status indicator LED	
<3>	ALM	Alarm status indicator LED	
<4>	FUSE	Fuse for 24V power supply	
<5>	JX5/CHK	Connector for ESP and signal checking	
<6>	JS1B	Connector for NC interface	
<7>	JF1/ENC	Connector for Pulsecoder	
<8>	CX5X/5Y	Battery connector for ABS Pulsecoder	For servo check pin board
<9>	CX18X/18Y	Connector for fan motor	
<10>	CX19A/19B	24V power input/output connector	
<11>	CX20	Connector for separated regenerative resistor (OH alarm)	(Note)
<12>		DC link charge indicator LED	(Warning)
<13>	sw	Switch for regeneration error detection circuit changeover	
<14>	CX21	Connector for primary power input	
<15>	CX22	Connector for motor power	
<16>	CX23	Connector for separated regenerative resistor (resistor line)	(Note)

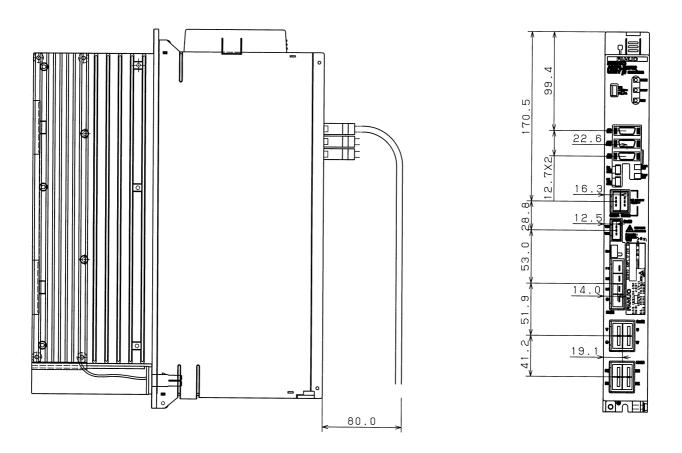

It is dangerous to touch any cables and components inside the module while this LED is lit. Never touch components or cables while this LED is lit.

NOTE

Refer to Section 8.5 for details.



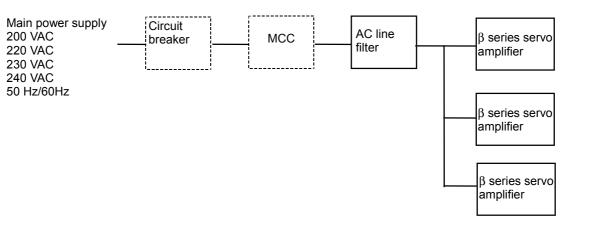
7.1 FSSB INTERFACE (SVU-40, SVU-80)



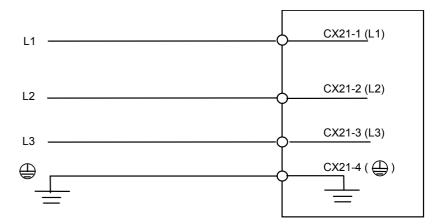
B-65232EN/03

7.2 I/O Link INTERFACE (SVU-40, SVU-80)

7.3 PWM INTERFACE (SVU-40, SVU-80)


8.1 K1 CABLE CONNECTION (ONLY FOR PWM INTERFACE)

Refer to Section 4.1 "K1 CABLE CONNECTION (ONLY FOR PWM INTERFACE)."

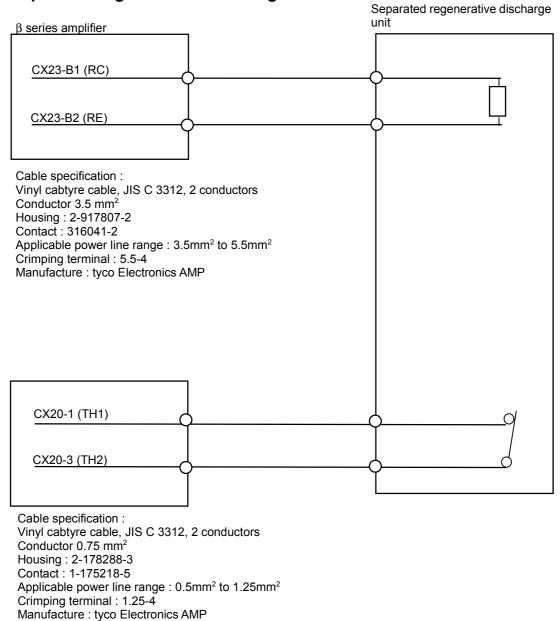

8.2 K2 CABLE CONNECTION (ONLY FOR PWM INTERFACE)

Refer to Section 4.2 "K2 CABLE CONNECTION (ONLY FOR PWM INTERFACE)."

8.3 K3 CABLE CONNECTION

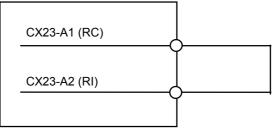
	Applicable cable		
Model	Cabtyre cable (Warning 1)	Heat-resistant vinyl cable (Warning 2)	
SVU-40	3.5 mm ² or more	3.5 mm ² or more	
SVU-80	3.5 mm ² or more	3.5 mm ² or more	

Housing : 1-179958-4 Contact : 316041.2 Applicable power line range : 3.50mm² to 5.50mm² Manufacturer : tyco Electronics AMP Wire to be used 600V vinyl cabtyre cable, 4 conductors (Nominal sectional area : 3.5 mm²)


1 600V vinyl cabtyre cable, JIS C 3312, 4 conductors
2 Heat-resistive vinyl cable
(maximum conductor temperature: 105°C)
(equivalent to the LMFC, manufactured by
FURUKAWA ELECTRIC CO., LTD.)

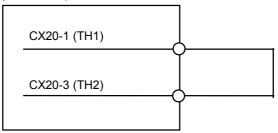
8.4 **K4 CABLE CONNECTION**

Refer to Section 4.4 "K4 CABLE CONNECTION."


8.5 K7 AND K8 CABLES CONNECTION

When separated regenerative discharge unit is used

When separated regenerative discharge unit is not used


Make a connection within connector CX23 by using a dummy housing.

Cable specification : Vinyl cabtyre cable, JIS C 3312, 2 conductors Conductor 3.5 mm² Housing : 2-917807-2 Contact : 316041-2 Applicable power line range : 3.5mm² to 5.5mm² Manufacture : tyco Electronics AMP

Make a connection within connector CX20 by using a dummy housing.

 β series amplifier

Cable specification :

Vinyl cabtyre cable, JIS C 3312, 2 conductors Conductor 0.75 mm² Housing : 2-178288-3 Contact : 1-175218-5 Applicable power line range : 0.5mm² to 1.25mm² Manufacture : tyco Electronics AMP

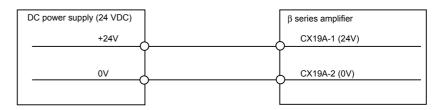
8.6 K14 CABLE CONNECTION

β series amplifier
CX5X (2)
CX5X (1)

Wire to be used Nominal sectional area : 0.32 mm² or less

Housing IL-L2S-S3L-B(N) Contact IL-C2-1-00001 Manufacturer : Japan Aviation Electronics Industry Housing IL-L2S-S3L-B(N) Contact IL-C2-1-00001 Manufacturer : Japan Aviation Electronics Industry

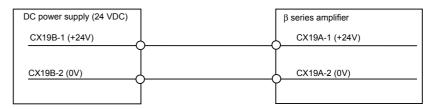
8.7 K15 CABLE CONNECTION


β series amplifier	Battery unit
CX5X (2)	+6V
	Y
CX5X (1)	0v
Ĭ	Ť

Wire to be used Nominal sectional area : 0.32 mm² or less

HousingScrew terminal : M3IL-L2S-S3L-B(N)Crimping terminal : 1.25-4ContactIL-C2-1-00001Manufacturer : Japan Aviation Electronics Industry

- 279 -


8.8 K12 CABLE CONNECTION

Wire to be used Nominal sectional area : 0.22 to 1.25 mm² or less

> Housing 1-178288-3 Contact 1-175217-5 (0.2 to 0.5mm²) 1-175218-5 (0.5 to 1.25mm²) Manufacturer : Japan AMP

8.9 K12 CABLE CONNECTION

Wire to be used Nominal sectional area : 0.22 to 1.25 mm² or less

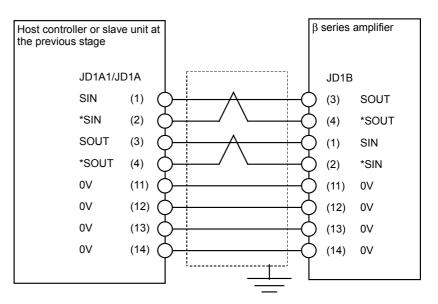
Housing 1-178288-3 Contact 1-175217-5 (0.2 to 0.5mm²) 1-175218-5 (0.5 to 1.25mm²) Manufacturer : Japan AMP Housing 1-178288-3 Contact 1-175217-5 (0.2 to 0.5mm²) 1-175218-5 (0.5 to 1.25mm²) Manufacturer : Japan AMP

8.10 OTHER CABLE CONNECTIONS

The descriptions for the β amplifiers SVU-4, SVU-12, and SVU-20 apply. See Chapter 4, "DETAILS OF CABLE CONNECTIONS".

9 FANUC I/O Link CONNECTION (FOR I/O Link INTERFACE ONLY)

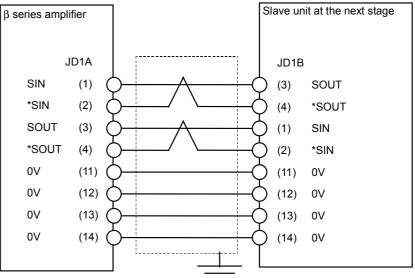
9.1 OVERVIEW


The FANUC I/O Link is a serial interface for connecting a CNC, β series servo amplifier (with the I/O Link option), I/O Unit-A, Power Mate, and so forth to transfer I/O signals (bit data) at high-speed among those units. When multiple units are connected by using the FANUC I/O Link, one unit functions as a master, and the other units function as slaves. The states of input signals from the slaves are transferred to the master at regular intervals, and an output signal from the master is transferred to the slaves at regular intervals. The β series servo amplifier (with the I/O Link option) can function only as a slave. The number of input points is 128, and the number of output points is also 128.

The connector names of the I/O Link are JD1A (or JD1A1) and JD1B, which are common to all units with the I/O Link function. A cable must always be connected from JD1A (or JD1A1) to JD1B. No cable is connected to JD1A of the last unit, so that JD1A of the last unit is left open, and need not have a component such as a terminator connected.

An I/O Link connection may be made via an electric cable or optical cable. Use an optical cable in the following cases:

- When the cable is longer than 10 m, or when the cable within the same cabinet is longer than 15 m. If the cable is installed in a duct, the units connected to both ends of the cable must be regarded as being installed within the same cabinet. Suppose, for example, that a CNC functioning as the host is installed in the operator's panel, a β series servo amplifier (with the I/O Link option) is installed in the power magnetics cabinet, and an I/O Link cable for connecting the CNC with the β series servo amplifier is run through a duct. In this case, the CNC and the β series servo amplifier (with the I/O Link option) are regarded as being installed within the same cabinet.
- When the cable is run from one cabinet to another, and the cabinets cannot be connected with each other via a ground wire of 5.5 mm² or more
- When the cable is affected significantly by noise. For example, when a powerful electromagnetic noise source such as a welding machine is placed near the cable, or when the cable is routed for a long distance in parallel with a power line or cable related to power magnetics that generates noise


9.2 FANUC I/O Link CONNECTION VIA ELECTRIC CABLE

Details of connection of cable K20 (when a connection is made with the host controller or the slave unit at the previous stage)

Details of connection of cable K20 (when a connection is made with the slave unit at the next stage)

When there is a slave unit at the next stage, make the following connection:

Specifications of a recommended connector and case for cable K20 on the β series amplifier side

Connector : PCR-E20FS (Soldering type) (Honda Communications) PCR-E20FA (Crimping type)

Case: PCR-V20L

Recommended cable for K20 cable

A66L-0001-0284#10P (10 twisted pair cable with a shield on the outside)

NOTE

- 1 Maximum cable length: 10 m (when the above recommended wire is used)
- 2 Use the same twisted wire pair for the SIN and *SIN signals. Also use the same twisted wire pair for the SOUT and *SOUT signals.
- 3 Do not make any connection to the pins other than those shown above. Do not connect an unused conductor of the cable.
- 4 Connect the shield of the cable to the ground plate of the cabinet by using a cable clamp. Regardless of whether a β series servo amplifier is connected with the host controller (or the slave unit at the previous stage) or the slave unit at the next stage, clamp and shield the cable immediately when the cable is run into the cabinet. If the host controller is installed in one cabinet, and a β series servo amplifier is installed in another cabinet, shield processing is required twice for one cable. Even if the cable is not routed outside the cabinet, be sure to clamp and shield the cable at least one location.
- 5 Switch on the control power for the servo amplifier at the same time with or before the host controller connected to the servo amplifier through the I/O Link. When switching off the host controller power, also switch off the servo amplifier control power.

Host controller power Servo amplifier control power	ON OFF	
	t : 0 or i	more

9.3 FANUC I/O Link CONNECTION VIA OPTICAL CABLE

By using an optical cable with an optical I/O Link adapter, the FANUC I/O Link can be extended up to 200 m. For details, refer to the manual of the host controller.

10 CONNECTION OF BUILT-IN DI (FOR I/O Link INTERFACE ONLY)

10.1 INPUT SIGNAL SPECIFICATION

The DC input signals are those sent from the machine to the servo unit.

They are transferred via a non-insulated interface that can be switched between sink type (24V common) and source type (0V common) except for an emergency stop input, which is fixed at a sink type (24 V common).

The relevant safety standards require that the interface be used as sink type.

The contacts on the machine side must satisfy the following requirements:

Contact capacity :

30VDC, 16mA or higher

Closed-state contact-to-contact leakage current :

1 mA or lower (at 26.4V) :

Closed-state contact-to-contact voltage drop :

2V or lower (including voltage drop across cable, with 8.5mA)

For information about the specifications of the skip signal, see Section 10.4.

10.2 LIST OF SIGNALS

(1) *****ESP :

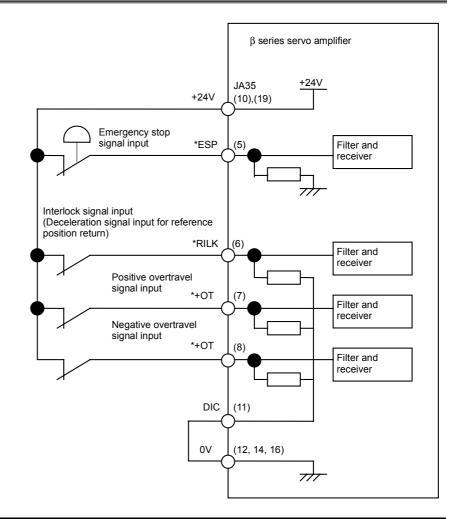
Opening the contact for the emergency stop signal input (*ESP) resets the servo unit and brings it to an emergency stop. Generally, this signal is issued using the B contact of a pushbutton switch.

(2) *****+OT :

Setting the positive overtravel signal input (*+OT) to logical 0 disables forward movement. This signal can be made unusable by parameter setting.

(3) ***-**OT :

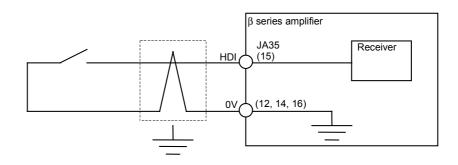
Setting the negative overtravel signal input (*-OT) to logical 0 disables reverse movement. This signal can be made unusable by parameter setting.


(4) *RILK(*DEC):

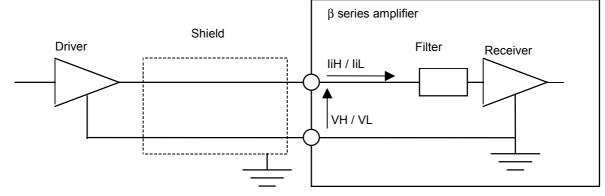
Interlock signal input (*RILK) or deceleration signal input for reference position return (*DEC). One of the two functions is selected according to parameter setting. If the interlock signal input (*RILK) is selected, axis motion is decelerated to a stop when this signal is set to logic 0. When this signal is set to logic 1, axis motion is resumed. If the deceleration signal input for reference position return (*DEC) is selected, the feedrate decreases to a certain value then remains at the decreased value for continued movement when this signal is set to logic 0. When this signal is set to logic 1, feed operation stops at an electric grid position.

(5)HDI :

The rising or falling edge of the skip signal input (HDI) can be used to cause the current block to be skipped. Whether the rising edge or falling edge is used depends on the parameter setting.


10.3 SIGNAL CONNECTION WITH THE POWER MAGNETICS CABINET

NOTE


- 1 Use cable (with a shield on the outside) for Cable K21.
- 2 Use wire having a size of 7/0.18 (0.18mm²) for 0V, +24V, and DIC.
- 3 Do not make any connection to the pins other than those shown above. Do not connect an unused conductor of the cable.
- 4 The above diagram is an example of a configuration with 24V common. For a configuration with 0V common, connect DIC (JA35-11) to +24V (JA35-10, 19), and the stage ahead of each switch to 0V (JA35-12, 14, 16). Note that only the 0V common configuration can be used for the emergency stop signal (JA35-5, *ESP).
- 5 Within 100 ms after emergency stop cancellation, turn on the external magnetic contactor inserted into the power input of the β series servo motor amplifier (with the I/O Link option).

10.4 SKIP SIGNAL INTERFACE

10.4.1 High-Speed Skip Signal Input Specification

Circuit configuration

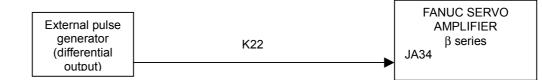
Absolute maximum rating

Input voltage range Vin: -3.6V to +13.6V

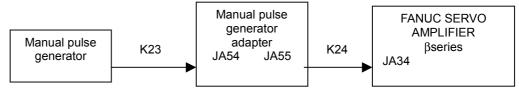
Input characteristics

Item	Symbol	Rating	Unit	Remarks
High-level input voltage	VH	3.6 to 11.6	V	
Low-level input voltage	VL	0 to 1.0	V	
Link lovel input evenent	131.1	2 max	mA	Vin=5V
High-level input current	liH	11 max	mA	Vin=10V
Low-level input current	liL	-8.0 max	mA	Vin=0V
Pulse width of input signal		20 min	μs	

NOTE

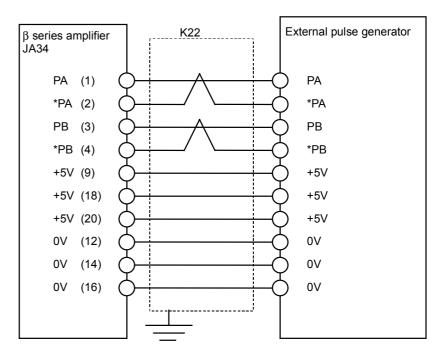

For liH and liL, the plus algebraic sign indicates the current that flows into the receiver, while the minus algebraic sign indicates the current that flows out from the receiver.

1 EXTERNAL PULSE INPUT (ONLY FOR I/O Link INTERFACE)


The FANUC servo amplifier unit β series (I/O Link option) enables operation according to externally applied pulses.

As an external pulse generator, an A/B-phase pulse generator of differential type satisfying the specification or a manual pulse generator available from FANUC can be selected. When a manual pulse generator is selected, a manual pulse generator adapter (A06B-6093-D001) is required.

When an A/B-phase pulse generator of differential type is used



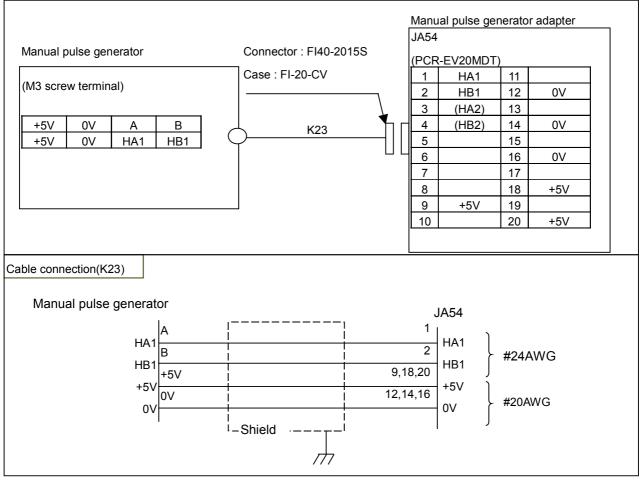
When a manual pulse generator available from FANUC is used

11.1 CONNECTION WHEN AN A/B-PHASE PULSE GENERATOR OF DIFFERENTIAL TYPE IS USED

11.1.1 K22 Cable Connection

Connector : FI40-2015S (Hirose Electric) Case : FI-20-CV (Hirose Electric)

Cable specification : Conductor 20/0.18×6, 7/0.18×3 pairs Recommended cable : A66L-0001-0286(#20AWG×6 + #24AWG×6 + #24AWG×3 pairs)


NOTE

- 1 The servo unit can supply power to a unit requiring up to +5V, 0.35A. In this case, consider the power supply voltage drop across the cable resistance.
- 2 Use the same twisted wire pair for the PA and *PA signals. Also use the same twisted wire pair for the PB and *PB signals.
- 3 Do not make any connection to the pins other than those shown above. Do not connect an unused conductor of the cable.
- 4 Maximum wire length: 50m

11.2 CONNECTION WHEN A MANUAL PULSE GENERATOR AVAILABLE FROM FANUC IS USED

11.2.1 K23 Cable Connection

The K23 cable is a signal cable for connecting a manual pulse generator with a manual pulse generator adapter (JA54).

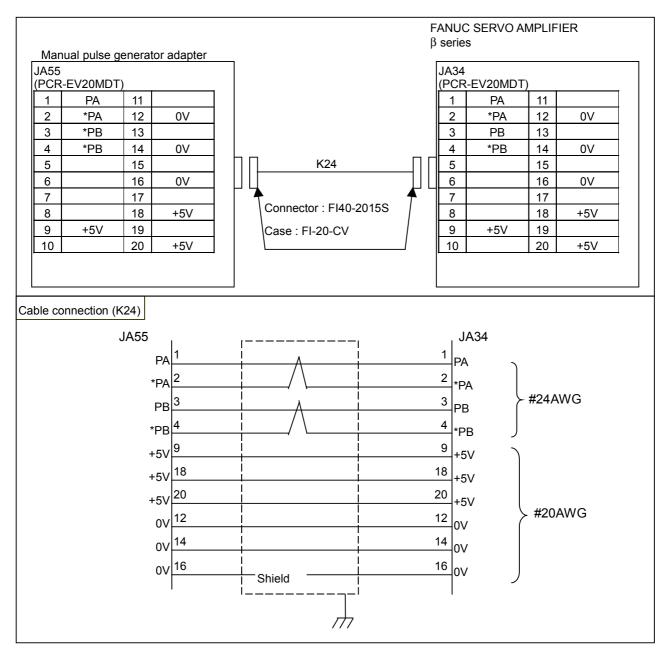
Recommended wire : A66L-0001-0286 (#20AWG \times 6 + #24AWG \times 3 pairs)

Recommended connector (on the JA54 side): A02B-0120-K303 Recommended cable : A02B-0259-K821 (7 m). When using the cable, rewrite the connector name.

The maximum allowable length is 50 m. However, another limitation based on a power supply voltage drop is imposed as described below.

Limitation based on a power supply voltage drop

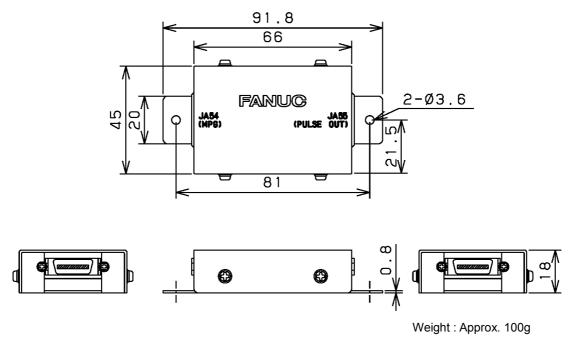
Suppress the power supply voltage drop due to cable resistance to 0.2 V or less (sum of the 0V and 5V lines).


For calculation, assume that the power supply current of the manual pulse generator is 0.1 A.

When making a calculation, include the length of the K24 cable in the cable length.

To one manual pulse generator, multiple (up to six) units of the FANUC servo amplifier unit β series can be connected. In this case, prepare one manual pulse generator adapter for each unit of the FANUC servo amplifier unit β series. A unit of the FANUC servo amplifier unit β series can be connected with a manual pulse generator adapter in the same way as described in Subsection 8.2.2, "K24 Cable Connection ". JA54(3) and JA54(4) are signals used to connect multiple units of the FANUC servo amplifier unit β series. For details, refer to Subsection 8.1.3, "Connection with Multiple Power Mate Units" in "FANUC Power Mate-MODEL E Connection and Maintenance Manual (B-62115E)". One unit of the FANUC servo amplifier unit β series connected with a manual pulse generator adapter via cable K24 corresponds to one Power Mate unit.

11.2.2 K24 Cable Connection


The K24 cable is a signal cable for connecting a manual pulse generator adapter (JA55) with the FANUC servo amplifier unit β series (JA34).

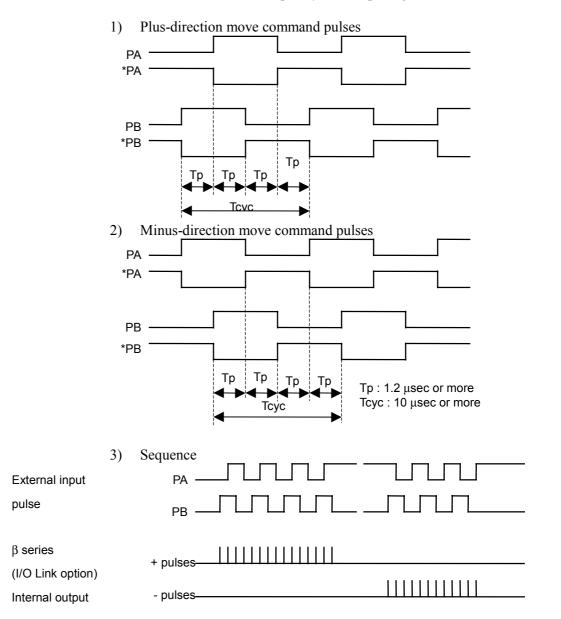
Recommended wire : A66L-0001-0286(#20AWG × 6 + #24AWG × ×3 pairs) Recommended connector : A02B-0120-K303 Maximum wire length : Up to 5 m

11.2.3 **Manual Pulse Generator Adapter**

External view

Installation condition

The manual pulse generator adapter does not have a closed structure. So, install a manual pulse generator adapter in a closed cabinet similar to a one used for the FANUC servo amplifier β series (I/O Link option).


The manual pulse generator adapter has two ϕ 3.6 holes. When securing a manual pulse generator adapter, use these holes.

The manual pulse generator adapter is light. So, when securing a manual pulse generator adapter, it need not always be screwed. However, ensure that a manual pulse generator adapter is not shortcircuited to another electric circuit.

Connect the case to ground by using a case mounting screw of the manual pulse generator adapter.

- Operating condition

The maximum allowable frequency of an input signal is 100 kHz.

β series External pulse generator SN75113 or equivalent Receiver circuit 4,3 PA 5 PA 6 7 9 *PA 1,2 10 11 12,13 PΒ *PB 14,15 The numbers indicate the pin numbers of SN75113. 12,14,16

- Example of recommended circuit

INDEX

<A>

ABSOLUTE-TYPE PULSE CODER	47
AC Line Filter	139, 196
ACCEPTANCE AND STORAGE	
Amplifiers Suitable for the $\boldsymbol{\beta}$ series Servo Motors	7
Amplifiers Suitable for the βM series Servo Moto	ors 5
APPROVAL SPECIFICATIONS	41
AXIS LOAD	

Battery Case	203
Blanks for Those Other than Data	
BRAKE SPECIFICATIONS	51
BUILT-IN BRAKE	50
BUILT-IN DETECTOR	46

<C>

Cable Clamp and Shield Processing	175
Cases Where a Separated Regenerative Discharge	
Unit Is Not Required	50
Cases Where a Separated Regenerative Discharge	
Unit Is Required	52
CAUTIONS FOR CONFIGURING AN EMERGENCY	
STOP CIRCUIT	87
CAUTIONS FOR SAFETY STANDARDS RELATED	TO
AMPLIFIER INSTALLATION	81
CHARACTERISTIC CURVE AND DATA SHEET	
	98
Characteristic Curves	35
Circuit Breaker Rating	137
CIRCUIT BREAKER, ELECTROMAGNETIC	
CONTACTOR, AND AC LINE FILTER	137
COMPATIBLE AMPLIFIERS	5
CONFIGURATION	14
CONNECTION OF BUILT-IN DI (FOR I/O Link	
INTERFACE ONLY)	288
CONNECTION OF THE BRAKES	53
CONNECTION WHEN A MANUAL PULSE	
GENERATOR AVAILABLE FROM FANUC IS	
USED	295
CONNECTION WHEN AN A/B-PHASE PULSE	
GENERATOR OF DIFFERENTIAL TYPE IS	
USED	294

Connector	. 39, 140
CONNECTOR ALLOCATION DIAGRAM OF	
β AMPLIFIERS (SVU40, SVU-80)	263
CONNECTOR LOCATIONS FOR β SERIES	
AMPLIFIER	220
CONNECTORS	56
Cooling Method (IEC34-6)	42
COUPLING	11

<D>

Data Items to be Entered	
Data Sheet	
DERATING	143
DETAILS OF CABLE CONNECTIONS	231, 271
DETECTOR SIGNAL OUTPUT	49
DIMENSIONS INCLUDING CABLES	227, 267
DRIVE SHAFT COUPLING	
Drive Unit	39

<E>

Electromagnetic Contactor Rating	. 139
EMC DIRECTIVE	44
ENVIRONMENT	14
ENVIRONMENTAL CONDITIONS	. 169
ESP Signal in Using a Servo Check Pin Board	. 247
ESP Signal Using More than One β Amplifier	. 246
EXTERNAL POSITION DETECTOR	48
EXTERNAL PULSE INPUT (ONLY FOR I/O Link	
INTERFACE)	. 293

<F>

FANUC I/O Link CONNECTION (FOR I/O Link	
INTERFACE ONLY)	283
FANUC I/O Link CONNECTION VIA ELECTRIC	
CABLE	285
FANUC I/O Link CONNECTION VIA OPTICAL	
CABLE	287
FEEDBACK DETECTOR	45
FIGURES OF CONNECTORS	52
FOR FSSB Interface or PWM Interface	245
For SVU-20	143
FOR SVU-4, SVU-12, AND SVU-20	150
For SVU-40 and SVU-80 144	, 154
FSSB INTERFACE	115

INDEX

FSSB INTERFACE	264
FSSB INTERFACE (SVU4, SVU-12, SVU-20)	
	21, 228
FSSB INTERFACE (SVU40, SVU-80) 25	57, 268

<G>

<H>

HEAT DISSIPATION	167
Heat Protection (IEC34-11)	43
High-Speed Skip Signal Input Specification	292
HOW TO SELECT A TRANSFORMER	166
How to Use Overload Duty Curves	37

</>

I/O Link INTERFACE 11	9
I/O Link INTERFACE (SVU4, SVU-12, SVU-20)	
	29
I/O Link INTERFACE (SVU-40, SVU-80)	
	;9
IEC34 STANDARD 3	8
INPUT POWER SUPPLY 16	53
INPUT SIGNAL SPECIFICATION	39
INSTALLATION 1	0
INSTALLATION CONDITIONS AND NOTES 16	58
Installation Method (IEC34-7) 4	13
INSTALLING LIGHTNING SURGE ABSORBERS 17	8
INSTRUCTIONS 1	9

<K>

K1 CABLE CONNECTION (ONLY FOR PWM	
INTERFACE)	232
K1 CABLE CONNECTION (ONLY FOR PWM	
INTERFACE)	272
K10 CABLE CONNECTION	252
K12 CABLE CONNECTION 253, 2	280, 281
K13 CABLE CONNECTION	254
K14 CABLE CONNECTION	255, 278
K15 CABLE CONNECTION	279
K2 CABLE CONNECTION	235
K2 CABLE CONNECTION (ONLY FOR PWM	
INTERFACE)	273
K22 Cable Connection	294
K23 Cable Connection	295
K24 Cable Connection	297

K3 CABLE CONNECTION	239, 274
K4 CABLE CONNECTION	240, 275
K5 CABLE CONNECTION	
K7 AND K8 CABLES CONNECTION	276
K7 CABLE CONNECTION	
K8 CABLE CONNECTION	249
K9 CABLE CONNECTION	250

<L>

LIST OF SIGNALS 290

<M>

MACHINE MOVEMENT PER 1 REVOLUTION OF
MOTOR SHAFT
MAINTENANCE AREA 20'
Manual Pulse Generator Adapter
METHOD OF CONNECTING THE FAN MOTOR 12
MOTOR SELECTION

<N>

NOISE PROTECTION	171
Noise Suppressor	174
NORMAL OPERATING MODE	148
Notes on Regenerative Discharge Unit Installation	156
NOTES ON USE	4

<0>

OTHER CABLE CONNECTIONS 282	
OUTLINE DRAWINGS	
OUTLINE DRAWINGS AND MAINTENANCE	
CLEARANCES 193	
OUTLINE DRAWINGS AND PANEL CUT-OUT	
DRAWINGS194	
Output (IEC34-1)	

<P>

PANEL CUT-OUT DRAWINGS	204
PIN ASSIGNMENT OF CONNECTOR CX11 (SVU4,	
SVU-12, SVU-20)	224
POWER SUPPLY	162
POWER SUPPLY RATINGS	164
Power Transformer for Export	199
POWER TRANSFORMER FOR EXPORTS	165
PROTECTION AGAINST SHOCK HAZARDS	184
PROTECTION AND ABNORMALITY DETECTION	
FUNCTIONS	146
Protection Mode (IEC34-5)	. 42

B-65232EN/03

B-65232EN/03

PROTECTIVE GROUND WIRE CONNECTION 189	Specifications of β M0.4 to β M1 Connectors for
PROTECTIVE GROUNDING 186	Signal
PWM INTERFACE 123	SPEED-TORQUE CHARACTERISTICS FOR H
PWM INTERFACE (SVU4, SVU-12, SVU-20)	CONTROL
	SPEED-TORQUE CHARACTERISTICS WHEN
PWM INTERFACE (SVU40, SVU-80) 261, 266, 270	CONTROL AND AN I/O Link β AMPLIFIE

<R>

REQUIREMENTS FOR COMPLIANCE	39
Rotational Speed (IEC34-1)	41

<S>

SELECTING A GROUND FAULT INTERRUPTER 170
SELECTING A MOTOR
SEPARATED REGENERATIVE DISCHARGE UNIT149
Separated Regenerative Discharge Unit 200, 205
SEPARATION OF SIGNAL LINES 171
Servo Amplifier Unit SVU-4,SVU-12,SVU-20 (FSSB
Interface) 194
Servo Amplifier Unit SVU-40,SVU-80 (FSSB Interface)
SIGNAL CONNECTION WITH THE POWER
MAGNETICS CABINET 291
Single-phase Input (SVU4, SVU-12, SVU-20)
Single-phase Input for Control Power 163
Single-phase Input Power Supply for Motor Power 163
Single-phase Power Input 258, 260, 262
SKIP SIGNAL INTERFACE
Specification 165, 141, 142
SPECIFICATIONS AND CHARACTERISTICS 73, 96
SPECIFICATIONS OF MOTOR CONNECTORS 57
Specifications of $\beta 1$ to $\beta 6$ Connectors for Power and Brake
(Not TÜV-compliant and Non-waterproof Type) 67
Specifications of $\beta 1$ to $\beta 6$ Connectors for Power and Brake
(Not TÜV-compliant and Waterproof Type)
Specifications of $\beta 1$ to $\beta 6$ Connectors for Power and Brake
(TÜV-certified and Waterproof Type)64
Specifications of $\beta 1$ to $\beta 6$ Connectors for Signal
Specifications of β M0.2 and β M0.3 Connectors for
Power and Brake 59
Specifications of $\beta M0.2$ and $\beta M0.3$ Connectors for Signal
Specifications of β M0.4 to β M1 Connectors for
Power and Brake

Specifications of β M0.4 to β M1 Connectors for
Signal63
SPEED-TORQUE CHARACTERISTICS FOR HRV
CONTROL
SPEED-TORQUE CHARACTERISTICS WHEN HRV1
CONTROL AND AN I/O Link β AMPLIFIER ARE
USED
STANDARD CATEGORIES RELATED TO
INSULATION DESIGN 183
SUPPRESSING ELECTROMAGNETIC
INTERFERENCE188
SVU-4, SVU-12, SVU-20 (Single-phase Power Input)
SVU-4/12/20 (I/O Link Interface) 190
SVU-4/12/20 (PWM Interface)
SVU40, SVU-80
SVU-40, SVU-80 (Single-phase Power Input)
SVU-40, SVU-80 (Three-phase Power Input)
SVU-40/80 (FSSB Interface)
SVU-40/80 (I/O Link Interface) 192

<**T**>

Three-phase Input
Three-phase Input Power Supply for Motor Power 163
Three-phase Input Power Supply Ratings for Motor Power
Three-phase Power Input
TOTAL CONNECTION DIAGRAM 213, 256
TYPE OF MOTORS AND SPECIFICATIONS 74, 97
TYPES OF MOTORS AND DESIGNATION

<U>

<W>

When a Regenerative Resistor Is Used	226
When No Regenerative Resistor Is Used	225
When Regenerative Discharge Unit is not Used 248,	249
When Regenerative Discharge Unit is Used 248,	249

<β>

β 1 TO β 6 CONNECTORS ON CABLE SIDE
$\beta M0.2$ and $\beta M0.3$ connectors on cable sides?
βM0.4 TO βM1 CONNECTORS ON CABLE SIDE 62

Revision Record

FANUC SERVO MOTOR [§] series DESCRIPTIONS (B-65232EN)

				Contents
				Date
				Edition
	- Total revision	- Addition of model β 0.5 - Addition of β series amplifier for I/O Link option		Contents
	Oct., 2002	Aug., 1997	Mar., 1996	Date
	03	02	01	Edition

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.